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FORE_{ORD

This report was prepared by the Chemical Engineering

Department with the cooperation of the Computer Laboratory

of Tulane University, New Orleans, Louisiana, to report on

the "Investigation into the Numerical Solution of Partial

Differential Equations," of Contract NAS8-20136.

This work was sponsored by the National Aeronautics

and Space Administration, George C. Marshall Space Flight

Center, Huntsville, Alabama. The progrmn was monitored by

Mr. Audie E. Anderson of the Computation Laboratory.

Principal Investigator on this investigation was

Dr. Dale U. yon Rosenberg, Professor of Chemical Engineering.

For the first several years of the study Dr. Daniel B. Killeen,

Director of Computing, served as Co-Principal Investigator.
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,. SU_'_]ARY OF INVESTIGATION

introduction. During the pe_.-iod from May 25, 1965, through

June 30, 1970, numerical sol{itions for four different cl'asses

of problems described by partial diffe%-ential equations have

been investigated under Contract NAS8-20136. The work per-

formed under terms of this contract will be described in this

final report.

The first section of this report is a sun_ary of the

results of the work and a list of sources for a complete

description of the work. _Each of the last four sections of

this report is a more detailed description of the work on ode

class of problems. In most cases, these last four sections

are comprised of technical papers published in journals or of

excerpts from doctoral dissertations.

It should be noted at this point that new techniques _;ere

needed for the numerical solutions of these problems and that

several of the methods developed may be useful in solving other

a

problems. The originality of the work performed under the

terms of this contract is attested to by the publication of

four papers in technical journals and the completion of five

doctoral dissertations on this work. In addition, two more

doctoral dissertations will be completed on work begun under

the contract, and there may be other papers published.

A complete listing of the publications and dissertations



I

SUmmARY OF INVESTIGATION

introduction. During the period from May 25, 1965, through

June 30, 1970, numerical solutions for four different classes

of problems described by partial differential equations have

been investigated under Contract NAS8-20136. The work per-

formed under terms of this contract will be described in this

final report.

The first section of this report is a summary of the

results of the work and a list of sources for a complete

description of the work. Each of the last four sections of

this report is a more detailed description of the work on ode

class of problems. In most cases, these last four sections

are comprised of technical papers published in journals or of

excerpts from doctoral dissertatJ.ons.

It should be notedat this point that new techniques were

needed for the numerical solutions of these problems and that

several of the methods developed may be useful in solving other

i

problems. The originality of the work performed under the

terms of this contract is attested to by the publication of

four papers in technical journals and the completion of five

doctoral dissertations on this work. In addition, two more

doctoral dissertations will be completed on work begun under

the contract, and there may be other papers published.

A complete listing of the publications and dissertations



i

i!

/
|

I

i
ill

i!_

li

r •

11

I

•I

2

resulting from this contract is presented at the end of

Section I of this report.

Major Classes of Problems Studied. The original problem

studied under terms of this contract was a two-dimensional

moving boundary problem. Analytic solutions for this type

problem cannot be obtained, and very few attempts at numerical

solutions have been successful. A successful numerical

solution was obtained for this problem and resulted in the

doctoral dissertations by Killeen and Stack.

As a part of one of the unsuccessful attempts at a

solution for the moving boundary problem it was necessary to

solve, numerically, for the velocity field in an ideal fluid.

Numerical solutions for this problem in terms of the potential

are well known, but a solution was desired in terms of the

velocity components directly. This solution was obtained and

published in the paper by yon Rosenberg. As a result of this

work, a more efficient method was developed by Gates, and his

dissertation and the paper by Gates and yon Rosenberg describe

this work. The methods were so successful for solution of the

unsteady-state potential flow problem (the elliptic-problem)

that an attempt was made to apply this new method to the unstea

state (parabolic) problem. The results of this work are

described in the dissertation by Mount which was completed in

May 1970.
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Work had been started at Tulane on the development of

numerical solutions for first-order hyperbolic equations

before this contract was initiated. The continuation of

this work was partially supported under this contract during

the development of the solution for a transient, compressible

flow problem including a moving shock. This work is described

in the dissertation by Watts and the paper by Watts and yon

Rosenberg. Work is continuing to refine this method and

extend it. This work will result in a dissertation by Royo.

At the request of a group in the Propulsion and Vehicle

Engineering Laboratory at Huntsville, a mathematical model

of the molecular sieve bed for the control of carbon dioxide

in the environment of a space capsule was developed. This

model was then solved numerically on the computer. Actually,

three mathematical models of varying coraplexity were developed.

The simplest one, which took much less computing time, was

°checked against the more complex models and found to be

sufficiently accurate for purposes of predicting behavior of

the bed. This work will be described in a dissertation by Schof.

Moving Boundary Problem. The physical problem studied is that

of the draining of a liquid film from the walls of a tank.

The co-ordinates were changed so that the governing equations

are essentially the Navier-Stokes equations. These equations

for the isothermal problem are
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8yw + _v. = 0
_z _y

and

3w _w _w PL-p _ B2W
_--_+ w_-{ + v_ = -g +

PL P 3y 2

with the equation of the movfng boundary given by

(1)

(2)

36 36

3--t + w_-_- v = 0 (3)

where 6(z,t) is the widt]_ of the boundary. The other variables

are defined at the end of this section. The complete non-

isothermal problem which is more complicated, is discussed in

Section II Of thi_ report. Only the method of solving the

isothermal problem will be touched on in this summary.

Two problems are involved in obtaining a numerical

solution to this problem. Flrst, the location of the boundary

at each new time level must be found from eqn. (3). Next,

the velocity components, w and v, must be found from eqns. (i)

and (2) in the entire liquid region. A two-dimensional grid
g

of points was set up, and the values of w and v were determined

at some of these discrete points.

In order to determine the location Of the boundary of

the liquid at the new time level, a finite difference analog

to eqn. (3) was written for each row of points. Each of these

equations contains the values of 6 at two rows at the new time

level. These equations were solved simultaneously with a

material balance relationship so that the additional amount of



I

I
I

I

I
I

I

I

I
I

I
I

I

I

I

I
I

I

liquid at the new time level was set equal to the amount of

fluid which flowed into the liquid region at the z = 0 boundary

during the time interval between t_,,o successive time steps.

Values of the velocity components at the old time level were

used in these equations so that no iteration was required.

The values of the velocity components, w and v, were

determined at the new time step for one new row of points at

a time. An iterative procedure was used for the finite

difference analogs which were centered in time. The values

of w and v used in the coefficients in eqn. (2) were one

iteration behind those determined at each iteration. Eqns. (2)

and (i) were used alternately to determine first the w's and

then the v's at the new time level.

Potential Flow Problems. In some of the early work on the

moving boundary problem, it was necessary to determine the

velocity field in the vapor, which was considered an ideal or

inviscid fluid. For this fluid, eqn. (I) applies, but since

the fluid has no viscosity, eqn. (2) does not apply. Instead,

the requirement that the flow is everywhere irrota£ional is

the second needed equation. This relation is

Bw Bv = 0 (4)

By Bz

A numerical method for solving eqns. (i) and (4)

simultaneously was developed. For the first method developed,
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both w and v were determined at all the intersection points

of a finite grid of horizontal and vertical lines. An

iterative method was needed since the boundary conditions

are given on all four sides of the region. Several efficient

algorithms were developed for which the equations from several

rows of points were solved simultaneously.

In the development of several of these multi-row methods,

it was discovered that one-fourth of the equations containing

one-fourth of the unknown values of w and v formed an independent

set. In this set the values of w and v were located on

different points in the grid, and the points at which w and v

were located were arranged in a checkerboard pattern. There-

fqre, a new method was developed for the numerical solution

of eqns. (i) and (4). This new method is clearly superior to

the original method. In fact, for some grid sizes it is

possible to obtain a direct solution to the finite difference

9quations with no iteration.

With such an efficient method available for the steady-

state problem, it was decided to attempt the development of

a "checkerboard" method for unsteady-state potential flow.

Equation (4), the irrotationality condition, still applies

to the unsteady state case, but eqn. (I), the continuity

relation, must be modified by the addition of an accumulation

term for the unsteady state case. This relation becomes
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_w _v _T

_z _y _t

(5)

where T is the flux potential which is temperature in the

case of heat conduction. The flux components can be defined

from the potential as

_T

w = - _-_ (6)

and

7

_T

V = - _g-qT" (7)

For this problem values of T at one-fourth the points of the

original grid must be deterzained at each time, as well as

values for w and v. Finite difference analogs to eqns. (4)

and (5) and either (6) or (7) are necessary to determine the

unknowns. A successful procedure was developed for this

problem, and it apparently has some advantages over previously

developed numerical methods for highly anisotropic problems.

Compressible Flow Problems. The differential equations for

transient flow of a compressible fluid cannot be solved

analytically and only recently have nmnerical or graphical

methods been developed for these problems. Any type of

solution is greatly complicated by shocks or discontinuities

which move through the flow field. For this problem, a

method had been developed for the numerical solution which

worked very well until the development of a shock. The



development of a method of introducing and following the

shock was continued under this contract.

The equations governing transient discharge of a com-

pressible fluid from a duct of constant cross-section are

_b _b _u (8)
_-_ = U_x - _-_

_u 3u [b ] _b (9)3--{ = -u_-_ - e xp (y-l) _-_

These equations apply for isentropic conditions and can be

used even when a shock is present if the entropy change across

the shock is small.

A centered finite difference method had been used to

solve these equations numerically with excellent results up

until the development of a shock. The shock forms and moves

into and then out of the duct. All flow variables are dis-

continuous across the shock. Therefore, at the formation of

o

the shock, a pair of moving points was introduced into the

fixed grid. The values of the dependent variables on the

two sides of the shock were assigned to these moving points,

and these points were allowed to move through the fixed grid

with the speed of the shock. Excellent results were obtained

for this problem.

For shocks of higher strength the entropy change is too

large for the isentropic equations to be used; so a third

equation must be included in the mathematical model. Also, in

8



computing the position of the shock, the characteristics of

the system were used. Therefore, in a continuation of this

work, the equations in terms of these characteristics are the

ones solved n_nerically. The characteristics are defined as

p = 2 A + u (i0)
y-i

2

Q = -xy---_A - u (ii)

and the governing differential equations in terms of these

variables are

_P - A 2_S - 0 (12)
_P + (u+A) _-_ _x_t

_Q + (u-A) _Q + A 2_s--_ _--_ _-_ = 0 (13)

_S + _S _
_-y U_x 0 (14)

for a duct of constant cross-section.

At the present time, eqns. (12), (13), and (14i have

been solved numerically. There is apparently some advantage

over solving the equations in terms of the physical variables.

A method is now being developed for introducing the shock

into the solution of these equations. The conditions at a

weak shock are much simpler in terms of the characteristics

than in terms of the physical variables; so a definite advantage

is expected in this case. The work on this problem will con-

tinue after termination of the contract.
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Molecular Sieve Adsorption Problem. Carbon dioxide must be

continuously removed from the environment of any manned space

craft. For longer flights a molecular sieve adsorption bed

is preferred over the lithium hydroxide cannisters currently

used. The carbon dioxide can be desorbed from the molecular

sieve bed which can then be reusedto adsorb more carbon

dioxide.

Several mathematical models of this adsorption bed were

developed, and computer programs were written for the numerical

solution of these models. The simplest model was sufficiently

accurate for purposes of the laboratory and could be used to

predict behavior of the bed in a very short time. This simple

model will be discussed below; discussions of the more exact

models are given in Section V of this report.

The heat effects of adsorption are included in the

simplest model, but the temperatures of the gas and solid are

assumed to be equal at any position in the bed. Furthermore,

the loading of the carbon dioxide on the solid, w s, is assumed

to be constant throughout the solid pellet. Both these

assumptions were justified from the results of the more exact

models studied. Variations in the gas density caused by

changes in pressure and temperature are also neglected, but

these variations can be shown to be small by analysis. The

resulting differential equations are
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s

_--_- = E E (P-Pks) (15)

_ws (16)
_x - __a EF-u _t = T-5-

u_-_ + (I+EG) 8T 8w_--{ = E s _--_ (17)

In addition to these relations, an equilibrium condition is

needed to relate Ws, the loading on the solid, to Pks' the

equilibrium partial pressure of the carbon dioxide in the gas

phase. This equilibrium condition is a function of T, the

temperature of the solid.

Finite difference equations analogous to eqns. (15) and

(16) were written, and the unknown value of p was eliminated.
o

This procedure resulted in a single relation between w and
s

Pks which was solved simultaneously with the equilibrium

relation. The amount of iteration is miniraized, and the

solution proceeds very rapidly even though small increments
o

in x and t must be used.

A model of the vacuum desorption case has also been

developed. This model accounts for density variations in the

gas since the pressures are extremely low. However, the

results obtained from the computer runs show that the gas is

removed from the bed as rapidly as it is desorbed.

During development of the adsorption model, a new analog

for the partial pressure in the mass transfer term was utilized.
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This diagonal analog was then applied to the equations for

the counter-current heat exchanger which had been solved

some years before. The results were so much improved that

a publication resulted.

12
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Nomenclature

A - dimensionless velocity of sound

b- In(p/p 0)

E E - dimensionless mass transfer coefficient

E F - ratio of capacitance of solid to gas for mass

E G - ratio of heat capacity of solid to gas

E H - ratio of heat of adsorption to heat capacity of gas

g - acceleration of gravity

p - partial pressure of carbon dioxide

Pks - equilibrium partial pressure of carbon dioxide

2
P A + u

_-i

2

Q __IA- u -

S - dimensionless entropy

t - time

T - temperature

u, v, w - velocity or flux components

w s - loading of carbon dioxide on solid

x, y, z - co-ordinate directions

6 - co-ordinate of moving boundary

y - ratio of heat capacities

- viscosity

p - density of gas

PL - density of liquid

P0 - reference density of gas

13
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Section II

Moving Boundary Problem
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NUMERICAL SOLUTION OF TWO-DIMENSIONAL MOVING-BOUNDARY PROBLEM

M

PROBLEM DEFINITION

The physical system studied is that of a reservoir whose

surface is at rest at time zero with vapor above the surface at a

temperature higher than that of the liquid. Asthe liquid is

drained out of the reservoir, a film forms on the wall and vapor

condenses on the liquid surface sim_ultaneously. The total vapor

space above the liquid is relatively small so that condensed vapor

on the dry wall above the initial liquid surface need not be

considered in the probl_m.

The equations describing this process may be derived using

basic physical laws. The result is that four partial differential

equations are obtained. The equations relating the variables and

their rates of change within the liquid are the continuity, momentum,

and energy equations. In addition ther_ is a partial differential

equation involving the position of the boundary. This last equation

is actually one of the boundary conditions. There are also other

boundary conditions, both at the wall and at the liquid-vapor inter-

face.

This type of problem has been analytically investigated by

Sparrow and Gregg (ii), Chung ( 2 ), and O'Laughlin ( 8 ). Kil!een

( 7 ) developed a finite difference solution to the isothermal

drainage problem with certain restrictions in the model. The dis-

cussion of an expanded model for the isothermal case will be

presented in the next chapter.

° 9

L
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The actual equations and boundary conditions are given by

Chung ( 2 ). In Figure 3-1, a sketch of the physical picture of the

film is shown.

x=0

T = Tb

x= St

T s

Vu __

t)

T = Tb i

6S

Figure 3-1 - Film for Drainage with Condensation

The equations describing this system are:

Continuit_

_ u _ v

_x _y

0
(.3.1)

m

Momentum

V

Ener£y

V

U

+

y

T

+

_Y

2

u_u _u _ u

-- + _ = E 2 + E3
_x _ t 2

Y

U _ T _ T 32T

+ -- = E1 ....
2

_x _ t _ y

(3.2)

(3.3)
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Boundary Conditions

at y = 0; u = 0, v = 0, T = T
w

at y = G ( x, t );

( all x and t )

_u _6 u
_6

--= 0, T = T ;--÷ --- v =
s

_y _t _x

T
E4 __

y

x and y are independent variables representing distance

t is an independent variable denoting time

u is the x-component of velocity

v is the y-component of velocity

T is the te_zperature

S is the constant drainage velocity at which the surface of

the bulk of the liquid is being lowered. At this surface

where x -- St, additional boundary conditions are:

u = u ( y, t ) and T = T b

The physical constants El, E2, E3, and E4 are given as

follows :

i

E 1 = k/ pc

E2 = g ( p - pv ) / P

E3=P / P

E4=k/X P,

(3.4)

It is clear that in solving this problem, consideration must

be given to the energy and mass transfered at the interface.

This problem is studied in two parts First an attempt is

made to develop a better model for the isothermal drainage problem
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as presented by Killeen ( 7 ). Then this expanded model is to be

used to solve the general problem.

L _J
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DISCUSSION OF THE ISOTHE_LIL DRAINAGE PROBLEM

The unsteady drainage problem represents a much simpler

physical problem than the one presented in 'the previous chapter.

There is no mass or energy transfer at the interface. Thus the

energy equation and the energy term in the boundary equation are

omitted. The set of equations reduces to:

Continuity.

_ u _ v

_ x _ y

Momentum

0 (4.1)

2

u
v _ u u _ u _ u ( 4.2 )

+ --, + = E2 + E3
2

_y _x _t _y

Boundary Conditions

at y = O; u = O, v = 0 ( all x and t )

at y = 6 ( x, t ); _ u , _ 6 u _

= 0; ,-- + - v = 0

y _ t _ x
6 4_3 )

at x = O;.u = u ( y, t )

Since much of the work done in solving this set of equations

numerically is closely connected with the work on the non-isothermal

problem, it is felt necessary to present a general outline of the

steps used by Kil!een ( 7 ) in his solution. _n his solution, use

L

14
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was made of the fact that the film formed by the •draining of a

liquid is the same as the film formed on a plate which is withdrawn

from the liquid. This equivalence was shown by Van Rossum ( 13 ).

The equations given above are transformed so that distance is

measured upward from a reference plane on'the surface of the bulk

liquid which moves downward with a velocity S. The transformed

distance is z = St - x. In addition, a new variable representing

the velocity upward with respect to this moving reference plane is

defined as w = S - u. The various transformations are given by

Killeen ( 7 ). The result is that the equations have the form:

Continuitx

w

z

Momentum

v

y

v _w w _w 3w _2w

+ + - E2+E3 2 (4.5)

_y _z _t _y

Boundary Conditions

at y = O; w = s, v = 0

at y = _ ( z, t ); _ w _ _ w _ 6

=0, + v=O

_y _ t _ z

(4.6)

at z = O; w =• w ( y, t )

Dimensionalization of the variables was then made by Kilieen

(7).

L
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His method follows:

i. All lengths divided by _o' the thickness of the film

at z = 0.

2. All velocities divided by S, the drain velocity.

3. All time divided by 6 / S.
O

The boundary conditions then become:

I
4

!

!

f

at y = 0; v = 0, w = 1

w
at y =6;

Y

at z = O; _ = i, w = w ( y, t )

The dimensionalization of course redefines the actual values of the

constants E1 and E2. They are now given as follows:

E2 6° g ( p pv ) / S 2

E3 = _ / pS_o

To solve the problem, a velocity profile at z = 0, typical of

4

boundary layer flow was chosen as:

3

w =i- Y+½y3
o 2 "

In the actual numerical solution, analogs centered about half-

time levels were written for the momentum equation. For a given row,

there may, or may not have been liquid at the old time step near the

boundary. A four-row averaging technique was employed if there was

liqdid at the old time step_ and a three-row averaging method was

used when liquid was not present at the old time step. Centered-

•difference equations were _itten at the new time level to solve the

[_ I
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continuity equation for v. The procedure for locating the boundary

at each time step was an important part of the solution. Analogs

for the boundary equation were written between successive rows,

starting with the second and third and continuing to the last two.

Each of these equations contains the length of two rows. These were

used in conjunction with an overall mass balance. In this balance,

the mass entering the system during one step at z = 0 is equated to

the sum of the changes in mass in each row during that time step.

This relation contains the lengths of all of the rows and together

with the other boundary equations gives a sufficient number of

equations for solution.

In his model, Killeen used the assumption that the liquid

la_er at z = 0 is of length _o at t = 0 and remains constant there_

after. This assumption seemingly caused:the eventual breakdown of

the solution. Eventually a situation is reached in which there is

not enough fluid entering at z = 0 to be distributed among the rows

which are present. It is here that a further study of this model

has been principally concentrated.

The computer program•listing for the numerical solution is

shown in the work of Killeen ( 7 ). It consists of a main program

and four subroutines. Since Ay = Az,'the solution is set up so

that the number of rows increases by one during each succeeding time

step. In starting up, the main program is used to calculate the

number of fluid increments in the second row after one time step.

The WF subroutine is used to calculate w's at this new row, and the

VF subroutine is used to calculate the v's. These calculated

L _J
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velocity components are then used in the GETJB subroutine to

compute the number of fluid increments at the second and third rows

after the next time step. The velocity subroutines are then used

to calculate new velocity values at these rows. The entire procedure

is then repeated for as many time steps as possible.

The momentum equation is used in the _ subroutine to compute

the values. Values of w and v which appear as coefficients in this

equation are obtained by an averaging and iteration procedure. After

the values of w have been calculated, they are used in the continuity

equation to compute the v's. The boundary equation analogs together

with the overall mass balance are used in the GETJB subroutine to

calculate new values of the boundary. This solution was carried out

for a variety of increment sizes and ratios. It was found that the

best ratio of Az to &y was unity and the ratio of Ay to either of

these varied between four and sixteen. This essentially concludes

the discussion of the numerical solution by Killeen ( 7 ).

Before attempting to develop a bet=ter model, a preliminary

study of various aspects of the existing solution was made. First,

the errors generated in the iteration procedure used in the calcula-

tion of the velocity components were investigated.

In_vest____i_ationof Iteration Procedures

In Figure 4-i, the points where the w's and v's are calcu-

lated are shown:

A i ['----_ 1 o o'o----

Z

_- A A A A

y

i-i j-1. j j +i

Figure 4-1 _ Grid for Velocity Calculations

_J
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. The w's are calculated at the I th row at the 0-points from

the momentum equation and the v's at the & -points from the continuity

equation. The momentum equation analogs are centered about the A -

points at the half-time level and the w's and v's are thus needed

at these points. For the first iteration, the values used are:

w ( i - ½, j - ½, n + ½ ) = ½ [w (i- I-, j- ½, n ) +

w ( i, j - ½, n )][ ( 4.7 )

v ( i - ½, j - ½, n + ½ ) = v ( i - ½, j - ½, n ) ( 4.8 )

After these have been used in the calculation of the w's at the

I th row and the v's at the I - ½ row, the new values of the coeffi-

cients are:

w ( i - h, j - ½, n + ½ ) = h fw_ - i, j - ½, n ) + w ( i, j - ½, n )

I.
- I_ j _ ½, n + 1 ) +w ( i, j - ½, n + 1 )[

+w( i ( 4.9 )

v ( i - ½, j - ½, n + ½ ) = ½ Iv ( i - ½, j - ½, n + I ) +

L

v ( i _ ½, j - ½, n !I ( 4.10 )

These values are used to obtain new estimates of w's and v's from

the momentum and continuity equations. This procedure is continued

until the values converge.

It is possible that errors which occur from incomplete

convergence during the first few time steps could greatly affect

the calculations for w and v at late time steps, especially those

at the uppermost rows.

L _A
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These runs were made with a Ay / 5z ratio of 16 with 5y = 1/48

and Az = 1/768 for a period of about 35 time steps. The values of

the velocity components obtained were the same to four decimal

places for 5 iterations. A series of runs were made in which 3, 5,

7 and i0 iterations were made at each time step before the calcula-

tions proceded to the next time level. Simular results were obtained

for other increment sizes and ratios.

The computed values which should be most affected by errors

are those at the uppermost row after many time steps, since these

values are necessarily affected by all previous calculations in

both time and space. It is significant that the use of a relatively

small number of iterations such as five, produces the same results

to four decimal places as does the use of a large number of iterations.

This result indicates that the analogs used have good stability and

convergence properties.

Study of Boundary Location Procedures

In the determination of the location of the fluid boundary

at each row at every time step, the variable used the computation by

Killeen was the discrete number of'fluid increments, not the actual

distance. This variable is defined as:

6 (1)= (JB (I, 2 )- i)(A y I ( 4.ii )

In the solution for the JB's at a new time level, the values

of JB at the old time level are involved. These new values of the

JB's are obtained in decimal or floating point form and converted to

integer form for use as an index. In this procedure, the fractional

I
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I
I
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part of the value is truncated. In Killeen's procedure, integer

values were used in the calculation of JB's at the next time level.

Decimal values at the old time level were used in the compu-

tation of the boundary at the new time. The result was altered

slightly, but not enough to be a significant improvement in the

solution.

In the boundary equation analogs, "w and v appear as coeffi-

cients. In his solution, Killeen ( 7 ) used the values at the g-

point at the old time level as indicated in Figure 4-2.

t = t
n

/JB (i, i).

I / j_(i-l,1)
A.- , t _ i

Figure 4-2 - Grid for Velocity Coefficients at the Boundary

The A -point has the value:

-point = JB.(_%, I)+3B < i- i, !).- 1

2

(4.12)

A study kof the way in which these coefficients are chosen

indicates that slightly better results are obtained if the values

of w nearest the boundary at the I th and I - 1 rows at the old

time level are averaged and used in the equations. A simular

procedure is used for the v coefficient.

L
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E_xj_anded Xodel for Iso'uhermal Drainaie

The preliminary work on the original model by Killeen ( 7 )

was done in order to facilitate studies for other models of this

I

I
I

li
J

li
Ii

Ji

process. In addition to the above work, the computer program for

the numerical solution was more compact by eliminating unneeded

storage space of data. In the original program, storage was pro-,

vided for all the values of w and v at both the old and new time

levels. During the calculation procedures at the new time level

for w at the I th row, the only values needed at the old time level

are those at the I and I - 1 rows. This makes it possible to use

only two subscripts for w, thereby reducing storage considerably.

Only one row of v's at the old time level are needed so the dimen_

sions for _ may also be reduced by one.

As stated earlier, the probable cause of the eventual break-

down of the numerical" solution occurs because not enough fluid

4_enters dur_ns a time step to be distributed among the rows after

their number becomes large. Therefore the nature of the boundary

layer flow at z = 0 needs to be investigated.

The boundary layer flow near a submersed plate which is

suddenly set in motion has been studied by Schlichting ( I0 ) and

others. It was found that the thickness of the boundary layer can

be expressed as a function of time. The relation is:

6 ( t ) = 4 _ c_4,13)

where v is the kinematic viscosity.
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The boundary layer flow at z = 0 in the drainage problem may

also be viewed as that made by a submersed plate suddenly set in

motion. Referring to Figure 4-3 it is seen that at z = 0, there is

a continuous body of fluid above that point.

w=l

j continuous fluid

at z = 0

o

z-- 0

Figure 403 _ Boundary Layer Flow at z = 0

Since the two processes are very much alike physically, the expression

for _ may be used at z = 0 to obtain a more realistic and better
o

numerical solution.

in working with this problem, it was decided to redimension-

a!ize the variables as follows:

i. All lengths divided by _ / S
o

2. All velocities divided by S, the drain velocity,

3. All time divided by _ / S2

The form of the equation is not changed, but the values of the

constants are redefined. These new values are:

E2 =

E3=

g _ (p _p:v ) / pS 3

L ._J
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Mathematically, the equation for _ at z = 0 takes on a
O

simplified form. This is shown Xn the following series of steps,

All primed quantities represent dimensionless variables. The

variables which are dimensionalized in the equation are 6 and t.

The relations are:

t
£ . j

= _ / ( v / S ) and t =
/ S2

( 4.14 )

or

v v ;
= -- _ and t = _ t

S S 2

Substituting into the expression 6 ' 4_-t

( 4.14a )

S

4

S2

t S ( 4.15 )

or

i

6 = 4 _ ( 4.15a )

J

Thus a very simple relation for _ in dimensionless form

is obtained. In the actual n_erical solution, the original symbols,

and t, are:retained.

The procedure used to adapt this relation for use in the

numerical solution is shown in the following steps:

I. At any time t, t = ( IM - i ) ( A t ) since IM = 1 at

t = 0 and One extra row of fluid is obtained for each

time step.

L _J
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2. do = [JB ( i, _9 ) - i] [ & y] where the subscript 1

represents the first row and the subscript 2 indicates

the new time level.

3. After substitution the equation has the fom:

[JB ( i, 2 ) - i] [A y] = 4 V( IM - 1 ) A t (4.16)

or

JB (i, 2 )= i + 4 / A y _/( IM _ i ) At ( 4.16a )

This relation for JB ( i, 2 ) may then be used directly in the

solution for all the JB's.

In the solution for the_location of the boundary, the first

step necessary is to develop an expression for the mass balance by

using the new relation for
O'"

The mass balance representing the amount of fluid entering

the system at z = 0 during one time step has the form:

p_ ( JB ( I, 2 ) - I ) A y A z - p ( JB ( I, i ) - i ) Ay

t+A t

°.f
.t

Y= 60

f
y= 0

w o 6 y_ t ) dy dt ( 4.17 ).
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The same boundary layer velocity profile as before is used, but is

now fitted to a growing _ . The relation is:
o

y y 3

Wo ( y, t ) = i - 3/2 (--_) + ½ ( -_-- ) ( 4.18 )
O *O

The mass balance then becomes:

_--a__IM [ I, I, ]y A z _ LJB ( 2 ) - JB ( 1 ) ( 4.19 )
P

I = 2

= Oj 1 312 ( --- + ½
dy

t y = 0 6o 60

dt

Integrating with respect to y the equation is:

by Az

!M

I
I= 2

[ • ]JB ( I, 2 ) -JB ( I, i )

t+A t

/-
J

t

y _

2 4
3 y I y

3
26 2 26 4

o o

t+A t

= j 3/8 60 dt with 6o = 4_/_

t

( 4.20 )

Since 6 is kno_vm as a function of t, this expression may be
O

integrated to give a relation involving the time at the beginning

• @

and end of the time step. If however, the value of the integral is

approximated by averaging the value of the integrated at the two

L _J
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limits and multiplying by A t, a much simpler expression results.

The equation then has the form:

AyA z I JB (i, 2) -JB (I, i)
I = 2

f 1= 3/8 A t .....
2 (4.21)

Since A z = A t, these may be cancelled on both sides of the

equation. Substituting the expression for _0 at both times, the

r

equation becomes:

I= 2

= 3/8

( JB ( i, 2 ) - I ) A y + ( JB ( i, i ) - I ) A y

2

o or

IM [ .. ]I JB ( I, 2 ) -. JB ( I, i )

I= 2

= 3/16 [ JB ( 1,2 )

JB ( i, i ) 2]
6 4.22a )

It is seen from the above relation that the overall mass

balance nowallows for an increasing amount of fluid entering at

z = 0 during a time step. The use of the modified mass balance and
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the expression for _ should enable the numerical solution to be
o

carried out for a higher nmm.ber of time steps. The velocity profile

at z = 0 is calculated in the same manner using the dimensionless

profile w .o

In using the new relations for _<,_e numerical solution, the

initial approach is to let JB ( i, 2 ) = 1 at t = 0 and then calcu-

•late JB ( I, 2 ) after each succeeding time step from the formula.

This approach is reasonable because it lets 6 = 0 at t = 0 and
o

then grow directly according to the boundary layer relation. This

is more physically realistic than the method used in the original

solution by Killeen ( 7 ). The procedure for the rest of the

solution remains the same except for use of the modified mass

l

I

I

I

I

J

balance in the boundary determination.

The first work done incorporating the above relations into

the numerical solution d_monstrated that uhe values assigned to w

on the first row by the boundary conditions greatly affected the

results. Consequently, it was here that the investigation

centered.

Initially w = 0 at z = 0 for all y. At t = 0+, w has nonzero

values for a few increments, Several different values of the

velocity profile at z = 0 were used to start the numerical solution,

These were:

i. w=0atz=0

2. w = 0.5 at z = 0

3. w = 1.0 at z = 0

4. A linear velocity profile
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None of these produced significantly better results than using the

original velocityprofile w . All of this seemed to indicate that
o

an established velocity profile for a significant number of incre-

ments during the first time step was needed. Since the relation

I
29
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for the number of increments, JB" ( 1, 2 ) = 1 + 4/Aye( IM - 1 ) A t

progresses relatively slowly if JB ( 1,2 ) is equal to unity

initially, it was evident the mode], needed to be modified.

After a thorough study of the various possibilities, the

following model was proposed:

I. Let JB ( i, 2 ) have a sizeable number of increments

initially.

2. Keep JB ( i, 2 ) equal to this value until enough time

steps have elapsed so that JB ( i, 2 ) would equal to

this value if calculated by the equation,

I

I

I

I

JB ( I, 2 ) = i + ( 41ay ) _/( IM - i ) a t

3. Then use the expression for JB ( 1,2 ) thereafter.

This model then requires that a boundary layer of signifi-

cant distance be formed almost i_ediately and after a short period
i

of time, it begins to grow, This is more physically realistic than

the original model in which a boundary layer of significant thickness

is formed quickly and remains constant for all time.

The numbar of increments to which JB ( i, 2 ) is initially set

is of course dependent somewhat on the size of the increments used.

This has to be determined for each individual case but the magnitude

of 6o is roughly the same.
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As the boundary layer begins to grow, the solution can be

carried out much further than was originally possible. The problem

of insufficient fluid for distribution among the rows does not

appear in the amount of time which elapses before the enlargement

I

I

I

I

I

I

of the boundary layer starts.

In the original n_n_erica! solution, another problem which

limited the solution was the calculation of values of w from the

continuity equation near the interface. This problem is one charac-

teristic of boundary layer flow. Discussion of this may be found

in Schlichting ( i0 ), Rouse ( 9 ), and others. The values of v

are computed from the differences in the values of w on two adjacent

rows, and each succeeding value includes all the differences at

lower values of y. As a result, values of v near the boundary

become abnorm_ally large. The transformation of the equations by

using potential and stream functions to obtain a second order

equation does not produce significantly better results. It is

not possible to determine exactly the limits of the magnitude of

v near the boundary. However, looking at the original drainage

problem, it is evident that there is more of a tendency for fluid to

move in the x-direction than in the y-direction. Hence it is

reasonable to assume that the greatest value of v' would probably not

exceed the greatest value of w Which is unity. Certainly the

absolute value of v would be no greater than the dimensionless

value of two for this problem.
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The first place these erroneous values of v begin to affect

the solution is in the momentum equation calculations for w. These

errors are then carried into the boundary calculations.

In the system of equations developed for the WF subroutine

which is solved using the Thomas Algorithm, the values ol v appear

in some of the algebraic expressions which are coefficients of the

unkno_._ w's. In these expressions where v's appear, the terms

involving the v's are usually small compared to the other terms

and do not significantly affect the calculations at all. If however,

the values of v become very large, then the whole calculation

procedure for the w_s becomes erroneous. Since relatively small

values of v, whether correct or not, do not significantly affect the

calculations to a great degree, a procedure was used in which very

large values of v near the boundary were limited to series of values

ranging up to two. While it is realized that these values of v are

not necessarily correct, the purpose is to allow a further study of

the numerical solution. Without doing this, it would be difficult

to determine _he real limits of the solution.

These "clamped" values of v were used in the original numer-

ical developed by Killeen ( 7 ) and a slight improvement resulted.

The solution could be carried out for a few additional time incre_

merits. This adjustment however, showed that the real source of

trouble was not erroneous values of v near the interface, but was

the problem of insufficient fluid entering the system.

L



It was felt necessary to limit these values of v near the

boundary from being too large in any subsequent work in order to

determine the limits of the numerical solution for the revised

model.

The above discussion essentially covers the developmeut of

the expanded model with regard to the derivation of relations used

•and numerical techniques for solution. The results of this model

along with a comparison with the model of Killeen ( 7 ) are

presented in Chapter V.

L _J
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RESULTS OF THE ISOTHE_£_L DRAINAGE PROBLEM

There were two major objectives involved in the study of the

isothermal drainage problem. First, several areas of the original

solution by K__leen ( 7 ) ware investigated. This included a study

of iteration procedures in the momentum equation and _he choice of

the velocity coefficients in the momentum and boundary equations.

After this was done, the feasibility of applying boundary layer

theory to obtain a better model was determined. The general result

of both of these studies was to obtain a solution which approximates

the position of the boundary more closely and which lasts for longer

periods of time, depending on the particular set of conditions.

The study of the original solution_was discussed in Chapter

iV. The major _provements over the original solution were:

i. Elimination of much unneeded storage space for data in

the computer solution.

2. Determination of the lower limit of the m_ber of itera_.

tions required for the calculations of the velocity

coefficients.

3. A better choice of the velocity coefficients in the

boundary equation.

4. Determination of the actual limits of the numerical

solution without interference from erroneous values of

v near the boundary.

l
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In addition, a new algorithm, was developed to solve the

boundary system of equations. This is discussed in Chapter VI and

Appendix A.

As discussed in Chapter IV, the major revision in the model

is to let the value of 6 be fixed initially and grow according to
O

a boundary layer relation after a certain number of time steps.

The lower limit to which 6 can be set initially was an important
O

part of this study. This limit depends both on the size of the

increments, A y and A z, and their ratio. The value used in the

original solution was 6° = i, so that JB ( i, 2 ) = 1 + 1 / A y.

This value was used as an upper limit for the initial size of 6° in

l_e;_Len_ sizes;the new model. For any choices of .......... the solution was

investigated for a wide range of values of _° from unity to zero.

Three different sets of conditions which are typical are used to

present these results. The values of the JB's were obtained as

computer output. The form of these is the same as those presented

by Kil!een ( 7 ). This output is presented for severai runs in

Appendix B. For each of the sets of conditions, the results for

the upper limit, 6 = i, and the lower limit are presented graphically.
O

These runs are as follows;

L_
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Run Y z A y /A z Initial JB ( 1 )

1 1/24 1/384 16 i0

2 1/24 1/384 16 26

3 1/48 1/384 8 20

4 1/48 1/384 8 49

5 1/48 1/768 16 15

6 1/48 1/768 16 49

36
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In Figures 5-I to 5-6, the position of the boundary at

several different time steps is presented for each of the runs. In

each case, the curve labeled with the highest number of time steps

represents the extent of the solution for those conditions.

L_
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Figure 5-1 _ Run # 1
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It tan be seen from the graphs that the solutions with a

lower value of 6 at t = 0 are substsntially better than those at
O

the higher values. These lower values of 6 are also more physically
O

realistic since the boundary layer is very small at t = 0+. In

almost all of the studies made, it was found that the number of time

steps for which 6 is constant ranged from about three to five. These
o

are relatively small numbers so that the boundary layer equation is

applied very quickly. It is also seen that there is a general con-

sistency as to the initial size of 6 for the different sets of
O

conditions. For example, JB ( i, 2 ) is 10 with A y = 1/24 for

Run # 1 and JB ( i, 2 ) is 21 with A y = 1/48 in Run # 3.

In Figures 5-7 to 5-9, a comparison of the results of the

new solution and those of the original solution is made. The

c_Jrves for the original solution are those for runs made with

"clamped" values of v near the boundary. Thus the extent of the

original solution without interference from erroneous values of v

near the boundary can be seen. These graphs show the improvement

°in the isothermal solution with t._e_new model. T_e boundary is

more accurately described, particularly at the lower time levels

because the initial size of 6 has a significant effect during the
O

first part of the solution. Also, the extent of the solution is

roughly doubled in most of the runs.
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RESULTS OF THE GENERAL PROBLEM

The study of the honisothennal drainage problem consisted of

two main parts. First the energy equation was added to the system

and then the mass added to the system due to vapor condensation was

included in the overall mass balance to obtain the general solution.

Addition of the Energy Equation to the System

?

i

r'

l

i

I

I

t

t

!

f

The numerical techniques used to include the energy equation

to the solution were discussed in Chapter VI. This equation includes

the combined effects of energy transport by conduction and by bulk

flow. The temperature profiles obtained are thus a complex function

of both of these effects.

At any particular row at any time, the value of the temperature

is equal to T at the interface and decreases to Tb at the wall. Thes

type of profile obtained was found to depend mainly on the direction

if flow in the y-direction. The velocity in the z-direction affects

o

only the magnitudes of the temperatures at any row as a whole since

the fluid flow in the z-direction is always positive.

It was found that if almost all of the values of v at any

particular row were of the same sign, a monotonically decreasing

temperature profile was obtained. However when a range of positive

values of v occurred for part of a row and were followed by a series

of negative values for the remainder of the row, in many cases

perturbations in the temperature profile around the point of change

resulted. This is explained physically in the following manner.
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If the velocities in the y-direction at any row are all of the

same sign indicating all of the transverse flow is in one direction,

then the type of profile mainly depends on conduction effects and

thus decreases in a regular manner from the value of T at the sur-
s

face to the value of T b at the wall. When the velocities are posi-

tive for part of the row and negative for the remainder, there is a

tendency for energy to be stored at and around the points where the

fluid flow from both directions meets. This is reflected in higher

temperatures at such points.

In Table VII-I, typical values of the temperatures at an

arbitrary row are shown together with the corresponding values of

v. In this case, since there are not ranges of velocities which

are opposite in sign, the temperature profile is of the monotonically

decreasing type.

In Table VII-2 the temperature values together with the

values of v are shown for the case of opposite flows in the y-

direction. It is seen that the point where the temperature discon-

I

I

I

tinuity occurs corresponds to the point where a significant range

of positive and negative velocities meet. It was found in general

that this type of discontinuity occurred when there were at least

four or five successive points with velocities of negative sign,

indicating a significant flow toward the wall at those points.

! L _J
!
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l

I

I

I

I

l

I

I

J

i

2

3

4

L_

T (I, J) v(l,J)

5

6

7

8
o

9

0.8000 0.0006

'0.8000 0.0175

0.8000 0.0549

0.8000 0.1035

0.8000 0.1509

0.8000 0.1801

0.8002 0.].593

0.8024 0,1161

0.8225 0.4182

Table VII-I - Temperatures and Velocities for a Monotonically

Decreasing Temperature Profile
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JB ( I ) = 21

J T ( I, J ) V ( I, J )

,

2

3

4

5

6

7

8

9

I0

Ii

12

13

14

15

16

17

18

19

20

L

0.8000

0.8000

0.8000

0.8000

0.8000

0.8000

0.8000

0.8001

0.8008

0.8049

0.8221

0.8034

0.8005

0.8001

0.8000

0.8001

0.8006

0.8028

0.8126

0.8530

Table VII_2 _ Temperatures and Velocities

Profile with perturbations

0.0034

0.0435

0.3.019

0.2310

0.3_99

0.5251

0.5617

0.5001

0_3853

0.1755

-0.1288

-0.3628

-0.4329

-0.3945

_0.3750

-0.4053

-0.4263

-0.5373

-.08523

-0.4896

for a Temperature

_J
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General Solution for Drainage with Condensation

The method used for approximating the amount of vapor

condensed during any time step was discussed in Chapter _I. In

the solution for the location of the boundary, the equation most

affected was the overall mass balance Which relates all of the unknown

boundary values. It was found that the system of boundary • equations

as a whole is very sensitive to changes in the overall mass balance.

After testing the solution for the same range of values of

increment size and ratio that were used in the isothermal solution,

two general changes were noted.

First it was found that in many cases a higher initial value

of 6 had to be used. The•value of 6 had to be changed more for
O O

higher values of the ratio A y / _ z. The other general result

was that the solution did not last quite as long for any of the

sets of conditions. This was probably due to the many additional

calculations involved which produced additional errors due to

truncation, etc.

Computer output showing boundary values for several sets

Of conditions is shown in Appendix B. These are of the same form

as those presented for the isothermal case.

In Figures 7-1 to 7-3, the position of the boundary at

different times is presented graphically. The conditions of

increment size are the same as those in C_apter V for the isothermal

case. The c0rresponding isothermal boundary positions are given

along with the various curves so that they can be easily compared,
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Figure 7-1 - Isothermal-Nonisothermal Boundar 7 Comparison No. 1
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These show the changes in the boundary position due to vapor

condensation.

In addition to the previously mentioned studies of the con-

densation model, the ef'fect of changes in T b on the solution was

investigated. In the results already presented for this model t

Tb was set at 0.8. The effect of increasing T b from 0.8 up to 0.95

using increments of 0.05 was investigated. It was found that the

only difference in the solution was that a small number of the

rows contained one less element of fluid. This finding confirmed

the consistency of the solution, but the curves for higher temper_

atures vary only slightly from those at 0.8 so that it is not felt

necessary to present them.

. As Tb was lowered, it was found that the addition of one

increment at several rows occurred. However at a value of about

0.7, the boundary solution breaks down. This probably occurs

because the model itself tends to become unrealistic when high

te_r,.perature gradients are present.

In addition to the results discussed above, the variations

_n the solution for different values of the constants E1 and E4

were checked. These values of course depend on the particular

liquid and the general range of temperatures involved.

For El, slight variations in the solution occurs for the

range 0.i to 1.0 The constant E4 is much smaller with a corresponding

magnitude of output 0.001. For higher values, th_ solution breaks

down because of the previously discussed sensitivity of the over-

all mass balance to changes in the amount of fluid entering the

system during a time _tep.

L
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In general, it was found that the nlunerical solution is

not constrained to one particular liquid or to one set of conditions.



PROGRAMORGANIZATION

In the preceding chapters, a description of the physical

problem was presented along with the finite difference techniques

to be used for the numerical solution. The calculations were

performed on an IBM 7044 computer using instructions written in

FORTRANIV. Program listings are provided in Appendix B for the

two new subroutines developed for the general solution. Listings

are also presented for the main program and for the subroutine for

the boundary location, since these had somemajor changes from

their use in the original solution.

To provide a clear picture of the overall sol_ition, the

general steps_ich are followed are given below:

i. Computation of w at all rows containing liquid using the

WFand COEFFsubroutines.

2. ComputatiOnof v at the samerow using the VF subroutine.

3. Computation of T at the samerows using the TF and

TCOEFFsubroutines.

4. Calculation of the new boundary position at the new

time level for all the previous rows plus one additional

row at the top, using the GETJBsubroutine.

5. Repetition of the computations for w, v, and T at the

grid points in the liquid for the new region.
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CONCLUSIONS

The most _portant conclusions which were drawn from this

study were:

I. The study of the original isotherma] solution provided

better knowledge as to the convergence of iterations

procedures used in the moving boundary problem. This

could be useful in solving other non-linear problems.

-]

L

o A better model for the isothermal drai6age problem was

sucessfully developed by using boundary layer theory to

describe the fluid flow at the surface of the reservoir

( z = 0 ). This solution is more physically realistic

and has the additional advantage of lasting for longer

periods of time.

, The energy equation was sucessfully incorporated into

the solution of the problem. This provided temperature

values at all points in time and space in the liquid.

o A workable model was developed for the overall solution

which included mass added to the system due to vapor

condensation.
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NOMENCLATURE

x

Y

z

t

u

v

w

T

T
s

Tb

S

E 1

E 2

E 3

E 4

k

C

P

P v

g

space coordinate

space coordinate

transformed space coordinate

time coordinate

e

x-component of velocity

y-component of velocity

z-component of velocity

temperature

interface temperature

wall temperature

draining velocity of reservoir

•a constant equal to k / pc

a constant equal to g (p - pv ) / p

a constant equal to u / p

a constant equal to k / h p

thermal conductivity of liquid

h'eat capacity of liquid

liquid density

vapor density

liquid viscosity

gravitational acceleration

[_
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6

JB

i

J

IM

J

I

C..

lj

D°
l

heat of condensation

kinematic viscosity

boundary position of the liquid-vapor interface

boundary position for particula_ value of i

subscript denoting the row number in the z-direction

subscript denoting the row number in the y-direction

FORTRAN variable denoting the uppermost row at any t.ime

FORTRAN subscript corresponding to

FORTRAN subscript corresponding to i

coefficients in the tri-diagonal system of equations

constant *ector in the tri-diagonal system of equations

L
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Potential Flow Problems
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Numerical Solution for Flux

Components in Potential Flow*

By Dale U..yon Rosenberg

Abstract. Values of the flux components are often desh'ed in potential flow prob-
lems. Second-order correct finite-difference analogs are developed for the differential

equations defining these flux components. Two iterative methods of solving the

resulting finite-difference equations are presented. Experimental results indicate the
most efficient value of the iteration parameter and demonstrate that, the number of

iterations required is approximately proportional to the square root of the number
of points in the grid.

1. Introduction. Many important physical problems can be described by a poten-

tial field. Included in these are the flow of heat, the flow of electricity, and the flow

of fluids in porous media. For ideal fluid flow problems a potential is defined only to
aid in the solution, and the velocity is the dependent variable of interest. Even in

eases where the potential corresponds to a real physical variable, such as heat con-

duction ,_nd flow of fluids in porous media, the flux is often the variable of interest.

For two-dimensional Cartesian co-ordinates, the differential equation which de-
fines the potential is

O2T . 0_T

(1) _/y_ + _z _ =0,

where 7' is the potential, y is one Cartesian co-ordinate, z is the other Cartesian co-
ordinate.

The flux components can be defined in terms of the potential as

(2a) v = -k 0_T
0g '

(2b) w = --/c --0T

where v is the flux component in the y direction, to is the flux component in the z

direction,/c is the transport eoeffieient.

A great number of potential flow problems ean be solved by wrious analytical

techniques. Itowever, a numerieal solution is required for many boundary condi-

tions. A number of methods ha_;e been developed for numerically solving Eq. (1) for

the potential. When values of the flux are desired, the flux components must then

be determined fi'om the numerical solution for the potential by finite-difference

analogs to Eqs. (2a) and (2b).

Received July 15, 1966. Revised February 13, 1967.

* This work has been supported by NASA Cont.raet NASS-20136 isstied at Marshall Space

Flight, Ceater, Huntsville, Alabama.
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2. Equations Defining Flux Components. The method described in this paper

yields a numerical solution directly for the flux components from the defining partial

differential equations. Since there are two flux components in the two-dimensional

ease, two equations are required. The first of these results from the continuity
principle and is the equation which yields Eq. (1) in terms of the potential. In terms
of the flux components, this equation is

(3) Ov Ow0_+Vz =0.

The second of these equations is the in'otationality condition which must hold in

order for the potential to be defined by Eq. (2). This relation is

(4) Ow Ov = O.
Oy Oz

These equations are completely first order, and they contain the first derivative of

each dependent variable with respect to each independent variable.

3. Boundary Conditions. Connnon boundary conditions used in conjunction

with Eq. (1) are the specification either of the potential or of the normal derivative

of the potential along the boundaries. The most general condition, of course, is

specification of a relation between these two along the boundaries. Specification of

the potential along a boundary is equivalent to a specification of the tangential flux

component along that boundary, while specification of the normal derivative of the

potential is equivalent to a specification of the flux component normal to the bound-

ary. The numerical method of solution for the flux components, described herein,

has been tested with several types of boundary conditions, including the general

t32oe for which a relation between the two flux components is specified.

For purposes of illustrating the numerical method, the boundary conditions
used are

(5a) w(z, 1) = f(z),

(5b) w(O, y) = g(y) ,

(5e) v(_, 0) = p(z),

(5d) v(1, y) = q(y) .

These boundary conditions are equivalent to a specification of the potential along

the adjacent sides for y = 1 _nd z = 1 and of the normal derivative of the potential
along the other two adjacent sides where y = 0 and z = 0.

4. Fhfite-Difference Equations. A set of grid points with equal increments in the

two directions is imposed on the region. This grid is illustrated in Fig. 1. Indices are

used to designate location in the grid. These indices are defined by

(6a) zi = (i --'l)Az for 1 =<i =< R,

(6b) Y_ = (3"- 1)_y for 1 < j < S,

(6e) with Az = _y.
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For the case of a square region, R --= S, but these limits will be used as given in Eq.

(6) so that the method eaIt be applied directly to a rectangular region. Two sub-

scripts are used with values of the dependent variables. These are defined as"

(7a) wi,i "= w(z_, yj) ,

(7b) vi,j = v(z_, y_) .

The boundary conditions of Eq. (5) are shown in Fig. 1 in terms of the discrete
variables.

1
Z

I÷1

I

-!

-2

J-2 J-I J J+l

y

FIGUJtE 1. Finite-difference grid

The first derivatives of Eqs. (3) and (4) ar e replaced by ccntercd differences.

These differences are written about the point z___/2, Ys-_/2 which is designated by

the cross (4-) in Fig. 1. However, only values of the dependent variables on the grid
points are used in the finite differences. This method of writing the finite differences

has been described previously for equations describing transient, eountereurrent
flow problems [1]. The analogs for the derivatives of v arc

(8a) Ov l[v_.i-v,_,.j v,.j__-v,_,.__, 1Oz"" 2 " Az + -A£ J '

av l Iv,.,- v,,y_, _F v,_,.,- v,_,.:_, 1(Sb) J"
Those for w are similar. These analogs are second-order correct. The truncation will
be discussed further in the next section.

Two finite-difference equations can be written for each square of four points in

the grid. After the space increments and the factor 1/2 have been eliminated, these
equations become

(9) w_,j -- Wi--1. j _- Wi.j--I -- Wi--l.j--1 Jl- Yi.# -- Vi.j--1 _1- g'i--loj -- Vi--l.]--I = 0 ,

(10) wl;j -- wi.j-1 + wi-1,_ -- w_-_,i-_ -- vi._ + v_-l._ -- vl.j-1 + ViLe.i-1 = 0.

Each equation contains eight values of the dependent variables, two at each of the

four points. These equations, together with the boundary conditions, define the

values of w and v at all points in the grid. Since the boundary conditions are specified

on opposite boundaries in both directions, a simultaneous solution of all the equa-
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tions is necessary. Two iterative methods of effecting this solution are presented in
later sections.

5. Truncation Error. The complete expressions for the first derivatives are ob-

tained from a Taylor series in two independent variables. The truncation error is

obtained by substituting these expressions into the original diff.el:ential equations.

The expressions for the errors can be simplified by use of relations obtained from
repeated differentiation of Eqs. (3) and (4).'The truncation crror for the finite-

difference analog to Eq. (3) is

(6zy.+_ (a4__,,+_3_w__.44 1
(11) Z, = -2,,=o_ \2_] \az '_+_] _=o_(-1)" (2r)l(4n - 2r 4- 3)!

and that for Eq. (4) is

(12) E, --2 _ :Az_"+" ['a'n+3v'_ '"+' 1
= (-1)" (2r)!(4n 2r + 3)!n=0

6. Corresponding Difference Equation in Potential. A finite-difference equation

in terms of the potential can be obtained from the finite-difference analog to Eq. (3)

and to analogs to Eq. (2). Second-order correct centered difference analogs to Eq.

(2) are used to obtain the flux components from the potential. The location of the

points used in these analogs are shown in Fig. 2. In order for the flux components at

the intersections of the grid lines to be de.*ermined from values of the potential by

these centered analogs, the potential must be known at the points denoted by the

crosses (4-). A typical equation for determining a flux component is

(13) _.] --_(1)( Ti'+l/2.]+l/2. Ti4-1/2']-l/2 Ti-1/2']+l/2 -- Ti-1/_']-l/2)= z,,j +
When such analogs for the flux components at the points denoted by circles (O) in

Fig. 2 are substjtuted into the finite-difference equation for Eq. (3), the finite-

J =i VR,J=_J J=S

1 I =R

VI,l= Pl

l
Z

W

AZ + /V
t-i ]

1
J'l J

AY

0 I:[

, W_.,j =cUj

"0 Y _ I

FmUI{E 2. Location of points for potential

Wl, S = Fl
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difference equation for the pote_tial is obtained. This is

(14) T_+l!2.j+lI2 + Ti+11_.i-3/_ + Ti-3/2..,'+1/2 + Ti-3l_..j__t2 -- 4T_-112.]-112 = O.
2(_y) _

This equation is the familiar five-point analog to Eq. (1) with the grid lines rotated

45 ° from those used to define the flux components, as shown in Fig. 2. Furthermore,

the increment size is 4 2 times that used in the grid for the flux. When analogs simi-

lar to Eq. (13) are substituted into the finite-difference analog to Eq. (4), the irrota-

tionality condition, all terms cancel as they should.

7. Nature of Iterative Methods of Solution. As mentioned previously, two iter-

ative methods of solving Eqs. (9) and (10) will be described. The first method effects

the simultal_eous solution of the finite-difference equations from a single row in the

grid. In the second method, the equations from two adjacent rows in the grid are

solved simultaneously. The methods can bc formulated and carried out either in the

y-direction or in the z-direction. In fact, the convergence is more rapid if the itera-

tion is carried out alternately in the y-direction and then in the z-direction, tIow-

ever, iteration i_1only one direction is convergent. In the presentation of the methods

in this paper, the solution is given for one or two rows of equations in the y-direction.

The iteratio;l procedure is begun at a boundary, where the values of one of the

flux components are known for a whole row of points. The otl_er flux component is

unknown along this row, as are both components enthe second row of points. In the

equations presented below, the iteration is begun at the z = 0 boundary, where iv is

given by the boundary condition. See Fig. 1. The finite-difference equations, Eqs. (9)

and (10), relate the dependent variables along these two rows of points. However,

there are three rows of unknowns and only two rows of equations. It is necessary,

therefore, to assume values of v along the second row of points. Values of v on the

first row of points and w on the second row are then computed from Eqs. (9) and

(10) based on this assumption. These computed values of w are then used with as-

sumed values for v on the third row to compute values of w on the third row and v

on the second row. This procedure is co_ltinucd across the region. For the last row of

equations, however, the values of v do not need to be assumed, since they are given
by the boundary condition, as showlx in Fig. 1, for z = 1. The conditions on each

boundary are thus introduced once on each sweep across the region. On the next

sweep of the region, the values obtained in the first sweep are used in place of the
assumed values.

In order to increase the rate of convergence, an iteration parameter, e, is intro-

duced into the Eqs. (9) and (10). These equations become

,U)(m+l) _/)(m+l) w(m+l) (re+l) v(.m! • (m) --. (re+l) _)(m+l)

(9a) i._ -- . _-_,¢ + _.¢-i -- wi-1,¢-1 + ,,j -- v_.s-1 -ff v_-l,_ -- _-_,s-1
-- (m) _ (m+l)h / [V_m ) (m+l)'_l= _[(,Wi.j-1 -- wl.j-1] -1- k "-LJ -- v_-x.jjj ;

(m-bl) (re+l) (re+l) (re+l) (m) y(m+l) -- y(m) (re+l)
(10a) w_.y -- w_.___ + w___._ - w___,__x -- v_.j + ___,y _.y__ + v___,y__

t[--r (m) _ (m+l)_ ," (m) _(m+l)x"t= _Wi,j--1 -- cvi,j--l] "_- _Vi--l,i -- Zi_l,jJJ.

The superscripts denote the ievel of the iterate. On the left side of the equations,

only two values at the old iterate (denoted by m) are used. These are the values of v
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on the ith row which were assumed for the initial sweep. The values of w on the

(i - 1)th row are known at the new iter'_tion level from the computations on the

previous row of equations. The values of w on the ith row and v on the (i - 1)th

to be from the simultaneous solution of this of Thecomputed equations.row _LFO row

iteration parameter is introduced into tile right sides of the equations as a coefficient
of the differences between the old and the new values of one v and one iv.

Tile values of v and w used in this iteration term are not located at the same
, point in the grid. Reference to Fig. 1 will show that the v appearing in this term is

located at the point designated by the square (['-]) and the w at the point designated

by the circle (O). The location of tile v is the one point of the four in the square whichis farthest from the boundary conditions specifying v in both the y- and z-directions.

The w point is similarly located.

8. Single-Row or Point-Wise Iterative Method. The method in which a single
row of equations is soh, ed sinmltaneously is the simpler of the two. Because of the
nature of the equations, the method is actuall_-a point-wise or explicit method. The

I firsL step in d_veloping this method is to add Eqs. (9a) and (10a). This resultingequation contains only two of the four values to bn computed. When multiplied by
one-half and written for j, it is

I _'1_ (re+l) -- /_ -- ",v(m+l) _j)(m+l) v(m) (m)

_,lO) _1)i.1 -_- kl -l'- e) i--l.j = i--1.1--1 -F 'i,j--1 _- el)i--l,j.

Another equation containing the same two unknowns can be obtained from one-half

the difference between these equations written forj + 1. This equation is

XW(m+I ) l)(m+l) ,w(m+l) v(m) (m)(1 + -- i.j+t •k u) e) i,y -- i-x,j = i-l,j+l n t- ewl,j

These equations can be soh, ed simultaneously to yield, for 2. =< j =< (S - 1),

I .... (=+1) (1 + _)A -- BU O v_-_o'= 1+ (1+_)2 ,

(is) w(,.5+,)= A + (1 + ,)B

I 1 + (1 + _)2 ,
(re+l) (m) . (re+l) -- v(m) (m)where A = w__1._-_1 + v_._-_x + cv(_)_,i, B = W__l._+l _._'+1+ ewl.i •

The boundary conditions specify v_-l,x = p,-x and w;,s = fi. The value of w at

the left boundary can be obtained from Eq. (16) as

. (re+l) (re+l) $)(m): (19) vdi,l : @i-, -_ Wi-l,2 -- 1,2 _- W(/m,1))//( 1 _t_ _) .

Likewise, the value.of v at the right boundary can be obtained from Eq. (15) as

(20) 0 (re+l) (re+l) (m),-1.a ---- (--f, + w,-,.s-, + v,.s-x + r'_"-)_.s)/(1 + _) •

Eqs. (17)-(20) provide tlle relations necessary for computing tile flux components

by the single-row iterative method.

?

9. Double-Row Iterative Meflmd. The double-row method utilizes the explicit

nature of the equations of the single-row method. The values of w on the ith row are

expressed in terms of the values of w on the (i - 1)th row and v on the ith row by

Eqs. (18) and (19) with e = 0. These are substituted into Eqs. (15) and (16) written
between the ith and (i + 1)th rows. The resulting set of equations can be solved to
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yield values of w Oll t:he (i q- 1)th row aM values of v oil the ith row. The solution of

these equations requires values of v at the okt iterate on the (i q- 1)th row and values
of w at the new iterate o11 the (i - 1)th row. Values of w on the ith row can then be

computed from the values of v at the new iterate on the ith row by Eqs. (18) and

(19) with e = 0. Likewise, the values of v on the (i - 1)th row can be computed

from these values of v oll the ith row by Eqs. (17) a__ld (20) with e = 0. In this man-

ner, values of v at the old iterate are requii'ed on only every other row of points for

each sweep across the region. This method, consequently, converges more rapidly

than does the single-row method.

The direct solution of these equations has been effeeted by separating the com-

plete system into two bi-tridiagonal systems of equations. The general equations of
each system are the same, and they are

(re+l) 1 (re@l) x (re+l) 1U(md-1)

(21) --cwi+l._ -- _vi,i__o + (3 + e)vl,j -- _ i,i_-=
1 r (re+l) (,,,+1) _ -- (m) (m) _ (m) (m) ] .

"_- "ff[Wi-l.j--2- -- Wi--l.j-b2J -I- Pi+I.j--1 -31- /)i+l.j+l -1- I_[l;i.j -- 'Wi+I,j I ,

\ (re+l) _ 0n+l) _ \ ,(re+l)-- (1 + e)wi+i,s-= + owi+l,i + (4 + de)v;,i
(22)

= ,W (re+i) (-,'_w_"_t']__ + ,_,,j + 4,,_;',,;_, + '",,_) - ,,,!_?,.;__]tt'o_ i,j . •

In one system the j index takes on od d values, and in the other system it. takes on

even values. The boundary equations of each system are obtained from suitable

combinations of the original equatio:_s.

A number of solution algorithms have been developed for these systems of equa-

tions, but all of these develop significant round-off error for grids of 20 points in each

direction. Work is continuing in an effort to find satisfactory algorithms.

(23a)

(23b)

(23e)

(23d)

10. Experimental Study of Convergence Rate. A number of runs were made on

an IBM 7044 computer to study the number of iterations required for eonvergenee.

The boundary conditions of the test problem are

w(z, 1) = z,

w(0, y) = 0,

v(z, O) = O,

v(1, y) = _y.

The solution to Eqs. (3) and (4) with these boundary conditions is w = z and v =

--y for all'y and z. Since all derivatives above the first are zero for this problem, the

numerical solution will converge to the analytic solution for all grid sizes. Further-

more, this solution is a particularly easy one to check for convergencc. The initial

guess used in all the test runs was v = w = 0 at all points in the grid.

The first purpose of this study was to determine experimentally the most ef-

ficient value of the iteration parameter, e. The second was to compare convergence

rates for the doublc-row method and for the single-row method. The third purpose

was to compare the effect of grid size on the number of iterations required for con-

vergence.
The runs made to determine the most efficient parameter were made on a square
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grid with ten increments on each side. Consequently, there were 200 values of the

dependent variables to be determined. The method diverged for the two negative

values of the parameter tested, and it converged for all positive values and for zero.

For t = 0, the values of the dependent variables approached the correct values

asymptotically from the i,titial guess of zero. For the three positive values of

tested, nameb', ½, 1, and 2, the intermediate values of the dependent variables, in

some parts of the grid, increased above the correct values and then converged to

those values by a damped oscillation. Furthermore, convergence was more rapid for

all three of these values than for _ = 0. Of the three positive values, _ = 1 was the

most efiicient. At the end of 20 double iteration steps (one in the y-direction and one

in the z-direction) no value of the dependent variables differed from the correct

value by more than two in the fourth place. Most values were closer than this. For

the other two values of _, some values of the dependent variables differed in the
third place after 20 steps.

The double-row method converged in approxhnately half as many iterations as

the single-row method. For e = 1 and a 10 X 10 grid, the values obtained after ten

double step._ by the double-row method were approximately the same as those ob-

tained after 20 double steps by the single-row methad. After 20 double steps by the

double-row method, the values were almost completely converged to six places.

Only nine of the 200 values differed from the correct values by more than three in

the sixth place. The largest difference was seven in the sixth place.

The mm_ber of iterations required for convergence for a square grid is approxi-

mately proportional to the number of points along one side of the square or, conse-

quently, to the square root of the total number of points in the grid. For a square

grid with 100 points on a side, 200 double steps were required to obtain the salne

extent of convergence as was obtained by 20 double steps with a 10 X 10 grid. In
both of these test runs, the single-row method was used with e = 1. Similar results

were obtained for the double-row method with e = 0 for square grids with 10 and
20 points on each side.

1!. Experimental Study of Truncation Error. A study ofthe truncation error

was made for flow near a unit source at the origin. The exact solution for this prob-

lem is given by

(24) w = z/(y _ "-}-z') ,

(25) v = y/(y2 -t- z_) .

The flux components were computed in a square region with boundaries at y = 1/2,

z = 1/2, y = 39/2, and z = 39/2 for increment sizes of 1, 1/2, and 1/4; and the re-

sulting values were.compared with the exact solution. The truncation error was

approximately 30%, 7c/c, and 1.5% for the three grid sizes; this variation is in line

with the second-order correct nature of the finite-difference analogs. The single-row

method of solution was used, and round-off error was negligible even for the largest

grid of 77 points per side.

12. Comparison with Alternating-Direction-Implicit Method for Potential. The

solution for flux components was compared with the alternating-directiou-implieit
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method of solution for the potential in a square region for equivalent boundary

eonditions. The boundaw conditions in terms of potential are

(26a) at Y = 0, 0T/0F = 0 for all e,

(26b) at z = O, OT/Oz = 0 for all y,

(26c) aty = 1, T= 0 for z < 1,

(26d) atz= 1, T= 1 fory< 1.

Equivalent boundaw conditions in terms of flux components are

(27a) at y = O, v = 0 for all z,

(27b) at z = O, w = 0 for all y,

(27c) aty= 1, w=O for z < 1,

(27d) atz= 1, v=O fory< 1,

(27e) at y = landz = l,v = landw = - 1.

Numerical solutions were obtained for n grid of -90 increments per side; thus, there

were 400 points at which either the potential or the flux components _ tic to be eb-

taiued. The initial iterates for each method were essentially equivale_tt.

For the alternating-direetioi>implieit method the set of nine iteration parameters

which result in most rapid convergence wa_ used. This sol. of parameters L- given by

Young [2]. Convergence was obtained in two cycles of the parameters or in 18 itera-
tions.

No analysis has been made to obtain a set of iteration parameters for most rapid

eortvergenee ia the solution for the flux components. Consequently, this solution was

effeeted using a value of unity for the parameter. Convergence was obtained in 30
iterations when the double-row method of solution was used. This method does not

compare unfavorably with the alternating-direetion-impiieit, method, and the use of

a set of more efficient iteration parameters for the flux component method should

decrease the amount of iterations required.

13. Conclusion. An efficient ,mmeriea! method for the determination of the flux

components in potential flow has been developed. Two iterative methods for solving

the resulting finite-difference equations are described. Experimental results which

determi_m the most efficient value of the iteratiott parameter and evaluate the rela-

tive effieieneies of the two iteration techniques are presented. These results also

show tl:tat the number of iterations required for convergence is approximately

proportional to the square root of the nmnber of points in the grid.

Tulaue University

New Orleans, Loui.siana

1. E. It. IIermn -6: D. U. yon IIOSEXBERC,, "An efficient numerical method for the solutiou

of pure convective trausport problems with split bmmdary conditions," Che,,_. Eng. Sci., v. 21,

19613, p. 337.
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An improved method of numerical solution for flux components in

potential flowt
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Abstract-A numerical method for solution of flux components which is completely superior to a
method described previously has been developed. In some cases this method leads to a direct, non-
iterative solution of two-dimensional problems. It also has an advantage over the alternating direction
implicit method in that much larger space increments can be used in one direction than in the other.
Examples are given which show the application of the method to mixed boundary conditions, curved
boundaries, and a point source.

I. INTRODUCTION

VALUES of the flux components are often desired

in potential flow problems. The flux components

can be defined in terms of the potential which in
two-dimensional Cartesian co-ordinates is de-

fined by the differential equation

02T 02T
_---:-_ = O, (1)

Oy2 oz _

where T is the potential, y is one Cartesian co-
ordinate, z is the other Cartesian co-ordinate. For

this co-ordinate system, the flux components are
defined in terms of the potential by

OT
v = -- k--, (2a)

0y

OT

w = - k _z' (2b)

where v is the flux component in the y direction,

w is the flux component in the z direction, k is the
transport coefficient.

A great number of potential flow problems can

be solved by various analytical techniques.

However, a numerical solution is required for

many boundary conditions. A number of methods

have been developed for numerically solving Eq.

(l) for the potential. When values of the flux are

desired, the flux components must then be deter-
mined from the numerical solution for the poten-

tial by finite-difference analogs to Eqs. (2a) and

(2b).

Recently yon Rosenberg[1] determined the

flux components by solving the differential

equations which define them. These are a contin-

uity principle

Ov Ow

Oy _-_z. = O, (3)

and an irrotationality condition

0W 0V
0. (4)

Oy Oz

Equation (3) is equivalent to Eq. (1), and Eq. (4)

can be obtained by equating the cross-partial

derivatives of Eqs. (2a) and (2b).

These equations were solved numerically by
using second-order correct analogs based on the

grid shown in Fig. 1. Both flux components were

determined at all the grid points represented by

intersections of the grid lines in Fig. 1. The finite

difference analogs to the derivatives were cen-
tered about the center of each element; for

example, the point Yj-I_,,, zi-lr-, in Fig. 1. This

?This work has been supported by NASA Contract No. NAS8-20136 issued at Marshall Space Flight Center, Huntsville,
Alabama, U.S.A.
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j - I/2

i+l

i-I

i-Z
j-2

AZ

Ay

"-I "÷I

_y

-I/2

Fig. I. Physical representation of centered differencing.

original method is termed the centered difference

method to distinguish it from the new method

described in this paper. The original method is

described in detail in Ref. [ I 1.

During the investigations of algorithms for

solving the finite difference equations which

resulted from this difference scheme, it was

discovered that the linear algebraic equations can

be reduced to a set of equations which can be
solved for one-half of the total unknown flux

component values. These remaining equations

can be uncoupled to form two independent sets of

equations, each of which forms a complete set for
one-fourth of the total unknowns. This is the

origin of the idea for the "checkerboard" method

for determining the flux components.
The "checkerboard" method is a second-order

correct differencing scheme with the difference

equations for Eqs. (3) and (4) written about

different points in the finite difference grid. The

name is descriptive of the way the unknown

values of v and w appear on the grid.

2. DEVELOPMENT OF THE CHECKERBOARD

DIFFFRENCE EOUATIONS

In the "checkerboard" method the continuity
equations and the irrotationalily equations are

not centered at the same points on the integra-
tion net. This results in the v and w flux corn-

ponents being determined at different points.

Only one value is determined at each grid point

as compared to two values for the normal cen-

tered difference approach. The pattern formed on
the finite difference grid by these unknowns

suggests the name "checkerboard." Figure 2
illustrates this.

Ay -I

i+l "_--A

i÷l z

i

O-- V

rn--W

i-I

i-I
J _ r

_y

Fig. 2. Physical representation of checkerboard

differencing.

The o's are determined at the grid points on

Fig. 2 indicated by the symbol C), and the w's are

determined at those grid points indicated by I-:3.

The finite difference equations for the continuity

equation are centered on the rows with the v's

and at the grid points falling between the points

where the v's are to be determined. The point

indicated by the letter C is an example of one of

these points. The finite difference equations for

the irrotationality condition are centered on the

rows with the w's at the grid points between the

points where w's are to be determined. The point

indicated by R is one of these points. The space

increments, Ay and AZ, are as indicated on the

figure. Note that they are the total distance be-

tween any two unknowns on any row or column.
The v's and w's have different indexing

systems so that if the origin (z,y) = (0,0) has the

subscripts (i,j) = ( !, 1) then the variable w_._ will

be located at the point given by
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The variable v_,_ will be located at the point given
by

zi = (i--½)Az,

• 1y_ = (J--_)Ay.

The finite difference equations are developed

by substituting expressions developed from a

Taylor series in two independent variables for
the continuous derivatives in the differential

equations. The checkerboard difference analog
for the continuity equation centered at point C of

Fig. 2 is

Vi, j -- Vi,j_ 1 Wi+l,j -- Wij

q -0. (5)
Ay AZ

The difference analog for the irrotationality
equation centered at point R of Fig. 2 is

Vi, j -- Vi_l, j Wi,j+l -- Wi• j

Az Ay
= 0. (6)

These difference equations include only four

values of the dependent variables per equation

whereas the centered difference analogs[l]

include eight values per equation.

3. TRUNCATION ERROR

The truncation error associated with the finite

difference equation is that part of the Taylor

series truncated in forming the equations. The

truncation error for the finite difference analog to
Eq. (3) is

[ 1 (Az'¢'( 02"+1v Oz'+lw'_]Ea=--_ (2n+1)!\-2-] \_+Oz-_ffg_+_/J
t/=l

(7)

and that for Eq. (4) is

[ l (_Z _2" (02n+ 1 vE4 = -- E (2n + 1)! \2-] \Oz 2"+'
R=I

a2.+lw'_]

(8)

The expressions for the errors can be simplified

by use of relations obtained from repeated dif-

ferentiation of Eqs. (3) and (4)• Equation (7) can
then be expressed as

[ 1 (AZ_4"+2(O4rt+BW_I

E3 =--2 _] L(4n+3)!\2-/ \_]J" (9)
#1=0

The truncation error, Ecjj, for the centered dif-

ference analog for the continuity equation is [ 1]

[ 1 (mz(,o_4tl+2(O4n+3W]
Ec°=--2 _ t_(4n+3)!\_] \_]

TI=O

(-- 1)"+1(2)2"+']. (10)

Here Azco is the space increment length used

on the centered difference grid.

In each of the series, (9) and (10), the first

term is much larger than the remainder of the

terms• These terms then can be compared to give

an approximate relationship between the sizes
of the truncation errors for the two methods. This
is

E3 1( Az _2
Ec,, - 2\_z_:_,/" (1 !)

Thus, for the same space increment the checker-

board method has approximately one-half as
much truncation error as the centered difference

method• The truncation error should be approxi-

mately the same when the space increments for
the checkerboard are 7'2 times those for the

centered difference method•

This analysis was the major reason for the

further investigation of the checkerboard method

for solving these equations• It was found that the

checkerboard solution is relatively much more

accurate than this analysis indicates•

4. CORRESPONDING DIFFERENCE

EQUATION IN POTENTIAL

It is interesting to see how the checkerboard

continuity difference equation looks when the

flux components are replaced by their definitions

in terms of the potential, Eqs. (2a) and (2b).

On Fig. 2, the symbols x represent the points
where the potential is to be determined• Values
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of v and w have the same subscripts as before.

The subscripts for the potential are such that the

variable T.j will be located at the point given by

_)Azzi= (i-'

yj = (j- DAy.

The checkerboard continuity finite difference

equation centered at point C is

Ui,.J -- l')i,j-1 Wi+ I,.J -- Wi,j
q -0. (12)

Ay Az

The variables in this expression can be expressed

in terms of the potential. An example is

(Ti.j2- Ti.i)vi.j = - k \ Ay "
(13)

These are substituted into Eq. (12) and Az set

equal to Ay to obtain

Ti+l._+ Ti,.i_t q- T,j__ + Ti__..j--4T,j
= 0. (14)

(Ay)'-'

This is the familiar five-point finite difference

equation for Laplace's equation. If, similarly, the

flux components in the irrotationality difference

equation, Eq. (6), are replaced by their definitions

in terms of potential, the equation reduces to
0 = 0 as it should.

5. SINGLE ROW SOLUTION METHOD FOR

THE CHECKERBOARD DIFFERENCE

EQUATIONS

For purposes of illustrating the numerical

method, the model problem used is a rectangular

region of length a in the y direction and b in the z
direction. The boundary conditions are

w(O,y) = f(y) (I 5a)

w(z,0) = g(z) (I 5b)

v (b,y) = p (y) (15c)

v(z,a) = q(z). (15d)

The boundary conditions are equivalent to

specifying the potential on the boundaries at

y = 0 and z = b and specifying the normal de-

rivative of the potential along the boundaries at

y=aandz=O.

The boundary conditions for the model prob-

lem are split so that it is necessary either to

solve all of the finite difference equations simul-

taneously for all of the unknown values of the

flux components or to perform an iterative solu-

tion. Because of the large number of difference

equations involved in most practical problems,
an iterative solution is the most useful.

The iterative solution developed for the chec-

kerboard difference equations is an implicit, line

iterative method. The lengths of the space in-

crements are given by the expressions

where

20

Ay -- (2S -- 1 ) (16a)

2b
Az -- -- (16b)

(2R-- 1)

It was arbitrarily decided to carry out the

iteration procedure in the z direction. A row of

difference equations for the continuity equation

and an adjacent row of difference equations for

the irrotationality equation are solved simultan-

eously for one step of the iteration. This method
will be called the single row method for later

reference purposes because one row of each set
of unknowns is determined per step. The itera-

tion procedure is begun at the boundary z = 0
where the flux components w_.j are known tbr the

whole row of points or equivalently for allj. The

row of continuity difference equations on the

row with the flux components v_.j and the row of

irrotationality difference equations on the row
with the flux components w.,j are solved simul-

taneously. These equations involve the flux com-
ponents w,,j, v_.j, and v.,.j. The w_.i are known

from the boundary conditions leaving three rows
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of unknowns and two rows of equations. The

values of v2,_ are assumed to start the iteration

and the two rows of equations are solved for

Vl,_ and w2,j.

For the next step of the iteration, the con-

tinuity difference equations on the row with the

v,,,j and the irrotationality difference equations on

the row with the Wz,j are solved simultaneously.

In order to do this operation, the values of w2.j
computed in the first step are used together with

guessed values of the Vz,j; the equations are

_-_'" _^-" and w3,_._u, ved,u, the v2,j

This procedure is continued across the region

until the equations adjacent to the boundary at
z = b are solved. Here the continuity difference

equations on the row with the vn-_._ and the
irrotationality difference equations on the row

with the wn,j are solved simultaneously for vn-_._
and wn.j. For this last step of the iteration the

vn,_ are known from a boundary condition and the

wn-l.j were computed in the preceding step of the
iteration.

The boundary conditions on each boundary
are thus introduced once in each sweep across

the region. On the next sweep of the region, the

values obtained in the first sweep are used in
place of the assumed values.

number of iterations needed for convergence is
approximately proportional to N, where N is the

number of points on the side in the direction of
iteration.

6. MULTIPLE ROW METHODS

The checkerboard finite difference equations

have a very simple form when the iteration para-

meter is omitted. Consequently, a method of

solving two rows of each of the two types of

equations simultaneously was developed. An

advantage of this method over the single row

method is that the values of ohly one-half as

many rows of v's need to be assumed in per-
forming an iteration.

The continuity difference equations on the

rows with the vl.j and the V2,j and the irrotation-
ality difference equations on the rows with the

w2,j and the w3,_ and solved simultaneously. The

wLj are known from a boundary condition. These
four rows of equations then involve five rows of

unknowns; the Vl.j, w.,.j, v.,._, wa.j, and v3,j. Values
for the v._,j are assumed so that four rows of

unknowns and four rows of equations remain.

The S--1 equations on the row with the w2,j

yield expressions for the vm,_ in terms of the
w2,j and v2,_. These expressions are used to

The use of iteration p"r""etor¢ t,..cc.olor_te olimin_to tho v,,j frarn tho onn_tlan_ ,'_. tho rau,

the convergence was tried, but equally fast

convergence was obtained with no parameter.
The equations for one step of the single-row

method without an iteration parameter are

V (M+l) -4- W (M+I) = V (M) + W (M) (1 7a)

-- iJ (M+l)+ w(M+.+ V (M+I) = W (M) (17b)
--i--l,j--1 -- i,j --i-- 1,j i--l,j

--w(M+I)-[-v(M+I) W (M+I)= v(M) (17C)i, j i-- l ,j -_- i,j + l _,3

-- v(M+l) + W(_+1_ = W(M) -- VI_],S (17d)
i--l,S--1-- i,S i-l,S

where M indicates the level of the iterate. These

equations fit the tri-diagonal matrix form so they

can be solved very efficiently with the Thomas
Algorithm.

The model problem was solved using this
single row method with several different sizes of

integration nets. It was determined that the

-:"- The S-w,. the v_,j. 1 equations that result fi'om

this procedure contain at most five unknowns

each. Those equations that involve boundary
conditions at the ends of the rows have fewer
than fivd unknowns.

The equations on the row with the v,,_ yield

expressions for the w3,j in terms of the v2,_ and the
w2,_. These expressions are used to eliminate the

w3,j from the equations on the row with the w3,j.
The resulting S--1 equations contain five un-

knowns at most. Again, those involving boundary
conditions have fewer than five.

The two groups of S- 1 equations that have

been formed contain the w2,_ and the v.,_,j as the
unknowns. The total of 2(S-- 1) equations when

arranged properly and written in matrix form

have a penta diagonal matrix of coefficients. An

efficient Gaussian reduction algorithm which

takes into account the zero elements in the co-
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efficientmatrixwasusedforthesolutionof these

equations. After the v2,j and wz,_ have been
determined, the explicit relations for the v,.j and

the w:,j in terms of the vzj and the w2,_ are avail-
able for computing these unknowns. This method
is termed the double row method because two

rows of each set of unknowns are determined

per step.
The next and subsequent steps of the iteration

procedure follow a pattern very similar to that

described for the single row method. A major
difference between the two solution algorithms

is that with the double row method, the values of

only every other row of the v's need be guessed

as opposed to the values of every row of v's for

the single row method.

The process of solving more than one row of

each type of equation simultaneously can be

extended to more than two rows. Equations were

developed for the simultaneous solution of three
rows and of four rows. I n the three row method,

only one-third of the v's must be assumed to start

the iteration procedure; and in the four row

method, only one-fourth of these values must be

assumed. The band matrix resulting from the
three row method contains seven non-zero

coefficients, and that from the four row method

contains nine.

A pattern developed in the iteration proced-
ures is that each time two more rows of equations

are included in a step of the iteration, the coeffi-

cient band matrix becomes wider by two ele-

ments. The middle two rows of unknowns are
determined from the simultaneous solution of the

2(S--1) equations in the matrix equation. The
other rows of unknowns in the set are computed

from explicit expressions as functions of the

values determined from the matrix equation.

Details of this procedure are given by Gates [2].
Table 1 contains the values for these coeffi-

cients for the general equations discussed above.
It also contains the coefficients for the eleven

wide band matrix that results from solving five

rows of each type of equation in each step of the
iteration. The band width is always equal to

2M + 1. where M is the number of rows of each

type of equation in the iteration step.
From Table 1, a pattern was developed for

obtaining the coefficients for any band equation

from the preceding row of coefficients. The
coefficients for the three wide band equation are

needed to start the process. Thus, the coefficients

for the five wide band equation can be obtained
from those for the three wide band, and the seven

wide band coefficients can be obtained from

those for the five wide band. The absolute value

for a coefficient is obtained either as the value of

the coefficient immediately above it or as the sum
of the absolute values of that coefficient and the

two coefficients on either side of it. In order to

explain this pattern, it is convenient to define a
nomenclature for the general band matrix.

Sets of simultaneous equations that have a
band matrix of coefficients are of the general

form

a}M'xj_ _ + a_M-"X__M_ , +" • . + al"'xj_._,

+ a_')xj_, + bjxj + c]'xj_, + c]")x_+.,+. • •

+,.IM-,,x.._, + cy"'x.M= (, 8)

where the xj's are the unknowns, the aj's, b j, and

cj's are the coefficients, the d_ is the known right-
hand-side of the equation, j is the position of the

equation in the set of equations and 2M + 1 is the

Band
width

3
5
7
9

11

Table I, Coefficients for the band equations

0.ii,5) Uj{4_ Oil3) (ljl2) ajll) bj (.jl) Cj(2) (,j(31 (,j(4) (,jtS}

--I +1 +1
--I --I +3 +1 --1

+1 --1 --5 +3 +5 --1 --I
+1 +1 --7 --5 +13 +5 --7 --I +1

--1 +1 +9 --7 --25 +13 +25 --7 --9 +1 +1
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band width of the coefficient matrix. When M

equals one, the equation is in the tri diagonal

form and when M equals 2, the equation is in the

penta diagonal form.

For the 5, 9, 13, etc. wide band equations, bj

and the aj and cj coefficients with even super-

scripts are obtained by the summing operation.

For the 7, 11, 15, etc. wide band equations, the

aj and cj coefficients with the odd superscripts

are obtained as the sums. The pattern for the

signs of the coefficients is obvious from the table.

The pattern for the coefficients of the equations

that involve boundary conditions on the sides of

the grid and the pattern for obtaining the excita-

tion vector for any multiple row solution method

were also developed. Reference [2] includes the

recurrence formulas for developing the coeffi-

cient matrix and the excitation vector for any

multiple row solution method for the model

problem.

The development led to a method for the solu-

tion of the model problem that includes all of the

rows of equations in the integration net in one

band matrix. The method does not require the

guessing of any of the values of the v's so it is an

explicit, non-iterative solution. It involves solving

simultaneously a set of 2(S-- I) equations that
have a band matrix of coefficients with the band

width equal to 2M + 1, where M is the number of

rows of each type of equation included. The

remaining unknowns are determined from explicit

expressions which give them as functions of the

values computed from the matrix equation.

The authors had available the program of an

efficient solution algorithm for the band matrix

which was developed at the Esso Production

Research Company. Given the band width, the

band coefficients, and the excitation vector, the

solution vector is computed. A computer pro-

gram for performing the various solution methods

for the model problem was written for the IBM

7044 computer.

Table 2 contains the results of solving the

model problem for a square region with S = R =
13 and a---- b = 1.0. Each of the solutions was

started with the same initial guesses and was

converged to the same convergence level.

Table 2. Six solutions of the model problem for the same grid

Approximate
no. of total

Band Steps/ arithmetic

S R width Iterations iteration operations

13 13 3 51 12 117,500

13 13 5 29 6 91,900

13 13 7 23 4 88,300

13 13 9 23 3 102,700

13 13 13 23 2 130,300

13 13 25 1 1 9200

The band width values given in the table
represent the width of the bands of the coefficient
matrices for the different methods. The band

width of three means that a single row of each

type of equation was solved per step of an iter-

ation and there were then twelve steps per iter-
ation. The band width of 25 means that twelve

rows of each type of equation was solved in one

step and, therefore, there was no need to iterate
to the solution. The solution was obtained in one

step.

The number of arithmetic operations for the

solution of the simultaneous equations by the

general band algorithm was determined. From
this value and from the number of iterations

required and the number of rows per iteration,

the total number of arithmetic operations for
each solution was determined. These are in-

cluded in Table 2.

The results indicate that the number of iter-

ations to reach a desired level of convergence for

the model problem is decreased by almost one-

half by using the double row method instead of

the single row method. Another significant

decrease in the number of iterations is accomp-

lished by going to the three row method. The four

and six methods give no improvement in the

number of iterations required.
Table 2 also shows that the decrease in the

number of arithmetic operations required for

solution in going from the single row method to
the double row method to the three row method

is not quite so impressive as the decrease in the

number of iterations required. The six row

method actually requires more operations than
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the single row method. The most impressive

figure is that the twelve row method, which for
this problem is an explicit, non-iterative method,

requires less than one-tenth as many operations

as the single row method.

7. EXPLICIT SOLUTION OF THE CHECKER-

BOARD EQUATIONS

Table 3 is a summary of the results of explicit

solutions for the model problem for several

square grids with a = b = 1.0. The conclusion to
be drawn from Table 3 then is that reasonable

solutions can be obtained with up to a 41 wide

band matrix, but the solution of wider band
matrices involves too much round-offerror.

Table 3. Summary of explicit solutions of

model problems

Maximum

Band per cent

S R width Ay error

7 7 13 0.15385 0.000

9 9 17 0. 11765 0.000

I1 11 21 0.09524 0-001

13 13 25 0.08000 0.005

15 15 29 0-06897 0.052

17 17 33 0.06061 0.129

21 21 41 0.04878 5.038

23 23 45 0.04444 43.936

directions. An example is found in oil reservoir
studies in which the two co-ordinate directions

represent the length and thickness of a reservoir.
The thickness may be a few feet and the length a

few miles. For this situation, with y representing

length and z representing thickness, one would

probably want to use a Ay much larger than Az.

When problems of this sort are being solved by
the alternating-direction implicit method, a ratio

of Ay to Az of about ten or larger causes con-

vergence problems. This limit is a result of the

need to sweep through the region in the direction
of the long space increments as well as in the

direction of the short space increments.

The iteration procedures developed for the

checkerboard difference equations involve

sweeping through the region in only one direc-
tion, which can be the direction with the shorter

space increments, Az. The single row solution
method for the checkerboard difference equations

with Az less than Ay is written very simply from

Eqs. (5) and (6). The continuity difference

equation is

Ay Ay
(, f+l) _,(M+I) -4- 7_ (M+I) IA,(M)--vii +-r-- =--,vi.i÷l. (19)"" i+1 ,j+l -- _i,j+l• az Az

The irrotationality difference equation is

These results indicate the size of the multiple

row method that can be used practically, and

they do not impose a limit on the size of grid that

can be solved by the checkerboard method. A

grid with 41 points on a side was converged very

well by the single row method, and a grid with 51

points on a side was converged by the five row

method. Other much larger grids were solved

with essentially no round-off error by 1, 2, 3, 4,

and 5 row methods during the course of the

study. Table 3 indicates that the two and three

row methods may be the best when the grid is too

large to obtain an explicit solution.

8. UNEQUAl. SPACE INCREMENTS

Problems sometimes occur in engineering for

which it is desirable to use space increments of

different lengths in the different co-ordinate

AV AV
" . {M+I) _[_ }4,(M+l} -- .._.L_" u(M)

--wtM+l' q-Az Vi,J-i+l.J---- i+I.J+I-- AZ i+l.j"
(20)

Solutions of the model problem were obtained

by using these equations with the ratio of Ay to

Az having the values of 0-10, 1.0, 10.0, 100.0,

1000.0, and 10,000.0. Exact convergence was
obtained for all six cases. The solution with the

ratio, Ay/Az, having the largest value required

the fewest number of iterations for convergence

and the solution with the smallest ratio required

the greatest number of iterations. The same
number of points were being determined for all

of the cases. These results emphasize the value

of making the iteration procedure explicit in the

direction with the shorter space increments.

It is possible to develop multiple row solution

methods for problems with unequal space
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increments. When two rows of each equation are
solved per step of an iteration, the simultaneous

equations fit the penta diagonal matrix form and a
general row of the coefficient matrix is

__2 --8 +(1+282 ) +8 --8 _

where 8 is the ratio Ay/Az. When three rows of

each equation are solved per step, the simul-

taneous equations fit the hepta diagonal matrix
form and a general row of the coefficient matrix
is

+63 -62 _(2+362) +(1+262 )

+(2+362 ) -6 z -63 .

When 8 equals 1.0 these coefficients reduce to

those developed in an earlier section for the

situation with equal space increments. The

coefficients for multiple row methods with band

matrices wider than these becomes very compli-

cated. They were not developed because, as it
was mentioned earlier, the two and three row

methods are probably the best solution methods,

other than the explicit solution method, for a

given sized grid.

The checkerboard method then has an impor-

tant advantage over the allernating-direction

implicit method. When the problem to be solved

is such that Ay can be much larger than Az, the
checkerboard method can be used.

9. EXPERIMENTAL VERIFICATION THAT

THE CHECKERBOARD METHOD IS

SECOND-ORDER CORRECT

In an earlier chapter it was demonstrated that
the checkerboard method is second-order correct.

Thus, the truncation error should be directly

proportional to the square of the space incre-

ment. If the space increment size is decreased by
a factor of one-half, then the truncation error

should be decreased by a factor of one-fourth.

The problem used in studying the truncation

error was that for flow near a source of strength/z
at the origin[l]. The exact solution for this

problem is given by

/_Z
w = (21)

(y_+ z 2)

tzy
v = (y2+z.,). (22)

In the solution a value of 0.1 was used for/z. The

flux components were computed in a square

region with the boundaries at y = 0.05, z = 0.05,

y --- 1.95, and z = 1.95. The boundary conditions

specified the exact values of the flux components

on the boundaries according to Eq. (13).

Table 4 summarizes the results of solving the
problem for four different grid sizes. The con-
clusion to be drawn is that the checkerboard

method is second-order correct since, for both

comparisons, the ratio of the errors is approxi-

mately equal to the ratio of the square of the
space increments.

Table 4. Experimental verification that the checkerboard

method is second-order correct

Ratio of average

Ratio of fraction error

S x R (Ay) z (Ay) 2 per value

19× 19 0.01055
41 × 41 0.00220 4.80 4.23

25 x 25 0.00601

51 × 51 0.00142 4.23 3.98

On the basis of Eq. (11), the statement was
made that the centered difference method and the

checkerboard method should have approximately
the same truncation error when the space incre-
ments used for the checkerboard method are X/2

times those used for the centered difference

method. The problem of flow near a source at the

origin was solved by the centered difference

method for a square grid with 28 points on a side.

Thus, the space increments were 0.0704. The

converged solution had an average fraction error

per flux component of 0.094.

This solution can be compared to the checker-

board solution for a square grid with nineteen

points on a side. The ratio between the space
increments for the two solutions was then
0-1025/0.0704=1.46 where X/2=1-414. The

543



W.J.GATESandD.U. VON ROSENBERG

checkerboard solution should have been slightly

less accurate than the centered difference solu-

tion according to Eq. (11 ). The converged values

for the flux components had an average fraction
error of 0.026 for the checkerboard method

compared to 0.094 for the centered difference
solution. Thus, the truncation error for the

centered difference method was about 4.5 times

that for the checkerboard method where it had

been predicted from Eq. (11) that the truncation
errors for the two methods should be about

equal.
The fact that the checkerboard solution was

much more accurate than the centered difference

solution cannot be explained in terms of round-

off error because the general band algorithm,

which is very stable to round-off error, was used

for both solution methods. The explanation must

lie in the fact that Eq. (11) is a comparison be-
tween the truncation error for the derivatives of

the function, whereas the values compared in the

above study are of the function itself. The

checkerboard method gives a much better

representation for the function itself than does
the centered difference method. This finding is

very significant and demonstrates the clear

superiority of the checkerboard method. A much

larger grid, and thus much less computer time
can be used for the checkerboard method. Thus,

there is little need to consider further the cen-
tered difference method for the determination of

flux components in potential flow problems.

It}. COMPARISON OF THE CHECKERBOARD
AND ADI METHODS

The model problem was solved for the potential

by the alternating-direction implicit method. For

the ADI method, the set of nine iteration para-

meters which results in the most rapid conver-

gence for a square grid with twenty increments
per side was used.

With twenty increments per side of the grid,

the ADI method required 26 iterations to con-

verge the solution to the fifth decimal place. The
The checkerboard method with the tri diagonal

iteration method required 61 iterations to reach

the same level of convergence.

Each of the 26 iterations for the ADI method

required two sweeps through the grid. Each

sweep required that twenty sets of twenty tri

diagonal equations each be solved. With approxi-

mately eight arithmetic operations per equation,

approximately 166,400 operations were required

for this optimum ADI solution.

Each iteration by the checkerboard method

required the solution of twenty sets of forty tri

diagonal equations each. Approximately 390,400

operations were required for the solution, or over

twice as many as for the ADI solution.
Table 3 is a summary of the results of solving

the model problem for a grid with thirteen points

on a side by six different multiple row methods

and the approximate number of arithmetic

operations required for each solution. The same

size grid was solved for the potential by the ADI
method with the same set of iteration parameters

used previously. This solution required eight

iterations to converge the problem to the same

level of convergence as those solutions sum-
marized in "Fable 3. The ADI solution required

approximately 18,300 arithmetic operations

which is considerably fewer than all of the mul-

tiple row solutions, except the explicit solution.

That required about 9200 operations or one-half

as many as the AD! solution.
The conclusion then is that the ADi method

can converge to a solution for the potential with
less work than the checkerboard method can

converge the equivalent problem for the flux

components. However, if an explicit solution can
be used for the checkerboard difference equa-

tions, then that is the fastest method.
The checkerboard method also has an advan-

tage over the ADI method for problems with

grids with unequal space increments as was
discussed in an earlier section.

I1. MIXED BOUNDARY CONDITION

The example problem for illustrating the treat-

ment of a mixed boundary condition is one with

an analytical solution given by Carslaw and

Jaeger[3]. The problem is the steady-state

temperature in a rectangle with convection into a

medium at zero temperature on one boundary.
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When the problem is converted from one in

temperature, or potential, to one in fluxes the

boundary conditions are

v(O,y) = -- l (23a)

w(b,y) = 0 (23b)

v(z, 0) = 0 (23c)

Ov (
_zz ,z, a, +hw(z,a) = 0 (23d)

where h is the heat transfer coefficient.

The grid is arranged with unequal space in-
crements for the two co-ordinate directions so

that v flux components are to be determined on

the boundary at y = a. Fictitious points are used

for the w flux components in order to write the

irrotationality difference equations and finite

difference analogs for Eq. (23d) on that boundary.

Figure 3 represents a portion of the boundary

at y = a. The dotted squares represent the

fictitious points. The irrotationality difference

(_ Vi+2, S

Wi+l , S- I I"_

Wi , S-I []

Vi+l ,S

Vi ,S

=0

r--i w (F)
L;J i+l ,S

--.y

Fig. 3. Boundary with mixed boundary condition.

equation written about the point, p, on Fig. 3 is

u(M+]) __ .,(M) IA,(F) __ t._(M+l)

i+l_ _i_s "'i,_ "'i_s-1 = 0 (24)
Az Ay

where F indicates a fictitious value, and M

represents the level of the iterate. The difference

analog for Eq. (23d) is

/B, (F) 4- w(M+])\
L'(M+I) t:(M) "i._ i,S--1

Az

The value • (r) is eliminated between Eqs. (24)Wi,S

and (25) to obtain as the last equation in the tri

diagonal set for that step of an iteration.

Ay 2 [ 2= 1
\ AZ] ,,s-, \ hay, F'+'_s k - hay/_''s"

(26)

The checkerboard solution was obtained for a

grid with 25 points on a side in about 100 itera-

tions. The average percent difference between

the values computed from the series and the
checkerboard numerical solution was 2.2 percent.

This is a good comparison between the
checkerboard numerical solution and the series

solution obtained by the ..... "--' ...... : "_t.; li:t b b l _., d.l a_pa_atLon-vi-

variables technique. The problem illustrates that

the method can be easily adapted to problems

with mixed boundary conditions.

12. CURVED BOUNDARY AND POINT

SOURCE

The boundaries of many problems that occur in

engineering are curved. Figure 4 represents

one-fourth of an elliptical oil reservoir in which

it is desired to find the flow patterns. Fluid is

injected in equal quantities at wells in two

quadrants of the ellipse and produced in equal
quantities from symmetrically placed wells in the

other two quadrants. The wells can be considered

to be point sources and sinks so that the problem

also introduces the problem of handling such

points. This problem is one which Douglas and
Peaceman [4] solved for the pressure distribution,
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Fig. 4. Integration net for elliptical reservoir.

i.e. potential, by using the alternating-direction

implicit method.
The wells are located so that the solution is

symmetric with respect to z and anti-symmetric

with respect to y; thus, it is necessary to consider

only the upper right hand quandrant. The bound-

ary conditions specify that the w flux compon-

ents are zero along both the y and z axes and that

there is no flow across the curved boundary.

The no-flow boundary condition on the curved

boundary is treated by approximating the curved

boundary with a stepped boundary as shown by

the broken line on Fig. 4. The points outside the

boundary are fictitious but the flux components
located there are needed to write the checker-

board difference equations at the usual interior

points. The approximate boundary is such that it

is vertical when it passes between an interior v

flux component and a fictitious v component.

There is no flow across the boundary so the v

component is zero at the vertical boundary.

Likewise, the approximate boundary is hori-

zontal when it passes between an interior and an

exterior w flux component. The w component is

zero on the horizontal boundary. The interior

component, the zero component on the approxi-

mate boundary, and the fictitious component all

lie on the same straight line so that the exterior

component can be expressed as a function of the

zero component on the boundary and the interior

component by the point-slope formula.

The finite difference equations are written as

Eqs. (I 9) and (20) so that the space increments in

the two co-ordinate directions can be adjusted to
cause the point source to fall on a point at which

the continuity equation would normally be
written. The iteration procedure used is the single

row method with the tri diagonal sets of equations.

Each succeeding step of the iteration procedure

has fewer equations to be solved than the pre-

vious step.
The solution satisfies Eq. (3) everywhere in the

interior of the region, except the point where the

fluid is injected. This is because the equation

expresses the condition that the net flow into the

region around a point is zero. To obtain the

correct expression at the point source, one writes
a material balance around the source point which

is indicated on Fig. 4. The fluid is injected at the

rate V. The flow, V_, across the line d-e is

approximately

Vi = - Az r <M+;) (27a)
'2,4 "

The flow, V.,, across the line e-f is approximately

V., = -- Ay w_%:'. (27b)

The flow, V:_,across the linef-g is approximately

V._ = AZ v (M+;) (27c)
, 2,5 "

The flow, 11"4,across the line g-d is approximately

I/4 = AV u,(M+;) (27d)
"- 3,5 "

Then at steady state V = V1 + I/".,+ V:_+ 1/"4and

the equation to be satisfied is

[A.(,,(M+_)_ ,,(_+-_ .,/..,_M+ ;) .... (M)_]
V= L-_\_z.s _',.4 /+A)\"':.5 "'2,syJ"

(28)

This equation fits into the tri diagonal set for that

step of the iteration.
The problem was programmed for the grid in

Fig. 4. The values of the parameters used were:

a = 1.0, b = 0.643, Ay = 0.147, Az = 0.155, and

V = 2-0. The point source was located at the
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point (z,y) = (0.232, 0.589). The solution was

converged to the fourth decimal place after
twenty iterations.

To obtain a check on the solution, the flux

components were numerically integrated to

obtain the potential which was compared to the

solution obtained by Douglas and Peaceman [4].
Equation (13a) was used for the numerical inte-

gration with k = 1-0. The integration was started

at the y = 0 boundary where the boundary con-
dition is T = 0. The values obtained are shown

on Fig. 4 at the points indicated by the +'s. The
values cannot be compared exactly to those ob-

tained in [4] because the dimensions of the region
used for that solution are not known, but the

potential profiles are generally the same. The

method for treating the curved boundary and the
point source is satisfactory.

13. CONCLUSION

A numerical method has been described which

can lead to a direct solution of some two-dimen-

sional potential flow problems expressed in terms

of flux components. This method can be used

with one space increment as much as 10,000

times the other, and thus, it has advantages over

other methods for the solution of such problems.

The method has been demonstrated to be appli-
cable to a variety of boundary conditions and

flow configurations.
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R6sum6-Une m6thode, bien sup6rieure '_ une m6thode d6crite pr6c6demment, a 6t6 d6velopp6e
pour donner une solution num6rique des composants de flux. Dans certains cas, cette m6thode

conduit "_ une solution directe, non it6rative de probt_mes 5_ deux dimensions. Elle pr6sente aussi
I'avantage sur la m6thode implicite de direction altern6e, de permettre d'utiliser des accroissements

plus importants dans un sens que dans I'autre. Des exemples sont donn6s pour montrer l'application
de la m6thode aux limites mixtes, courbes et 5_une source ponctuelle.

Zusammenfassung-Es wurde eine numerische L6sung fiir Str6mungskomponenten entwickelt,

die einer frfiher beschriebenen Methode weitiiberlegen ist. In manchen Fallen fiihrt diese Methode

zu einer unmittelbaren, nicht iterativen L6sung zweidimensionaler Probleme. Sie hat ferner den

Vorteil gegenfiber der impliziten Methode, mit wechselnden Richtungen dass viel gr6ssere r_iumliche

Zunahmen in einer Richtung verwendet werden k6nnen als in der anderen. Es werden Beispiele

fiber die Anwendung der Methode auf gemischte Grenzbedingungen, gekriimmte Grenzen und eine
Puhktquelle gegeben.

547



NUMERICAL SOLUTION OF TRANSIENT POTENTIAL FLOW EQUATIONS

Chapter 3. The Equations to be Solved

The specific problem which will be used to demonstrate

the solution of an elliptic problem is the potential flow of
- t

an irrotational, inviscid fluid. At steady state, it is

i.
represented in two dimensions as

+ = 0
Sx 2 _y-_ = Cxx + Cyy

where ¢ is the potential function, representing temperature

in he&t conduction, pressure in flow through porous media,

and concentration in particle diffusion.

Vx¢ = - K w

In these cases,

(3.2)

where K is the dissipation constant, and w is the flux or

gradient term represented by the heat flux, the velocity,

and the mass transfer rate. The parabolic equations can be

expressed as

• V_ = V2¢ = -Kr_ (3.3)

where t is time, V 2 = _/_x2 + _/_y2, and K r represents the

capacitance.

In a two-dimensional potential flow problem, the hori-

zontal and vertical flux components can be defined from

equation (3.2) as

u = - K _-_ and v = - K _-_. (3.4)

By differentiating equations (3.4), one obtains

L .j
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_y K _-_ _-_ - K _-_

Since the two second differentials are equal,

Then,

_u __x v = O.

This equation (5.7) is kno,_m as the irrotationality equation.
.

In addition to the irrotationa!ity equation, another equation

is needed to relate u and v in terms of x and y. Equation

I

I

I

I

I

I

I

I

I

(5.5) is the desired equation.

this takes the form

_u _v

When the term Vw is expanded,
°

- _ "

This unsteady-state potential flow problem as repre-

sented by the equations (5.4),(5.7), and (5.8) is one which

will be used in the development of new methods for numerical

solution.

Boundary conditions may be specified in various ways.

The major consideration is that with an elliptic problem,

either the potential or a derivative of the potential must

be specified along the entire boundary. For example, the

boundary conditions may be specified as in Figure 5.1. The

specification shown in Figure 5.i will be used.

K
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_T
u = u(y) = -

v--v()X ----
_T

_y

T = T(y)
$T

v= _y

T = T(x) _-_
8T

U =' -- _-_

Figure 3.1. Boundary Conditions
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Chapter 4. The Finite Difference Equations

i

I

i

I

Development of Finite Difference Equations

The development of the format for solving the trans-

ient elliptic finite difference equation arises from an

article by yon Rosenberg 23 whereby the elliptic equation was

split through the flux definitions, equations (3.4), into

two first-order equations as indicated by equations (3.7)

and (3.10). These equations were then solved by second-order

correct centered difference analogs. Gates 9 later solved

equations of the same type by a checkerboard technique which

he applied to various steady-state elliptic problems.

The unsteady-state potential problem can be solved

similarly. In this method the finite difference analogs of

three equations, the continuity equation, the irrotationality

equation, and a flux definition, are combined in varying

arrangements.

- Consider the elemental arrangement of values displayed

on the lattice shown in Figure 4.1, where i and j index each

double row of values in the z and y directions, respectively.

The v's are determined at grid points indicated by 0, the

w's at points indicated by [], and the potential, T, at

points indicated by _. This particular arrangement is used

to incorporate the boundary conditions as defined in the

model problem.
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T h I T'rh I' | T"/ I"

i-I i j - j j j j+l j+2 j+2 "'' S

_Y

Figure 4.1. Lattice of C, T, and I.

The finite difference equations are written to tie this

block of values together. For instance, if the element

shown comprises the total region, then boundary conditions

dictate the values of v along column j-I and row i-l, w

along column j+2 and row i, and T along row i-I and column

j+2. Then only the nine values--three groups of the three

points in the interior region--are unknown. Therefore nine

equations are required to determine the values of the flux

components and the potential at each of these points. The

finite difference analogs for the continuity equation, (5.1i),

are written around the points labeled C, C' and C", ; those

for the irrotationality 'equation, (5.7), around the points

labeled I, I', and I" ; and those for equation (5.4), around

the points labeled T, T', and T". At C, the finite differ-

ence analog for the equation of continuity is

U
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i[1 1 )]m+l(_-m) _(vi, j-vi,j_l) + _(wi,j_l-Wi_l,j_ 1

1 T -T. . " "
= A-t( i,j-i m l,j-Im+l)

where _ is equal to 1/2, _ or -1/2 for the backward,

centered difference, or fo_Jard analog, respectively, and

m is the time index.

At time m+!, the potential equation w = -_T/_z at point

T is

Wi-l,j-lm+l gz Ti,j-l-Ti-l,j-I m+l

and the irrotationality equation at point I is

_(vi,j-Vi_l,J)m+ I - -- ) =oAy i-l, j-Wi-l, j-i m+l

(_.3)

Truncation Error. In the development of these analogs

to continuity, irrotationality, and flux equations, it is

important to examine the truncation error in terms of space

and time increments. In Appendix B, the truncation errors

for the checkerboard arrangement of equations are computed.

The truncation errors in each of the three equations are

found to be as follows: ' .

L



[- 37 7

In the continuity equation,

E
c £ 2a+l ) .,-L\3y2n+l/e (T) _z _-_y (-_- (B.11)-n=l ( ' c

}

In the irrotationality equation,

.£
EI= -

n=l

1 C_82n+lv_ {Az_2n i82n+lw_ /Ay,_2nl/(B"

• ..=

And, in the w flux equation,

ET = _ 1 F___2n+lTh 2n
n=l _2n+l) :L\_z2n+I/T

Each of these errors revea!s the fact th&t the checkerboard

analogs are second-order correct.

Method of Sweeping Across the Grid. Letting _ = {/Ay,

i , andT = i/at, 8 = i/&z, ¢ = 6(½+a), q = 5(½-e), e = 5(_+_),

= 8(½-_), and rewriting, one obtains for equation (4.1):

( ) +0( w¢ vi'j-vi'j-i m+l " - wi'j-i i-i'J-I/m+l

= q/ri,j_ I
m - _i,J_lm+l

(4.4)

for equation (4.2):

Wi- I, j -Im+ 1
(4.5)

and for equation (4.3):

k
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6 v - B wi-i j "i-l,j-i m+l'j-Vi-l' J m+l

These three equations comprise the set which is re-

peated for three increments in j in Figure 4.1. In the gen-

eral case there will be many horizontal groupings by fine

from boundary to boundary vertically, and there will be many

more than three increments in j. At the boundary where z = 0

the flux components vl,j are known for the entire row of

points as are the potentials T l,j. The values of w2,j are

not known unless the boundaz_ z = I coincides with i = _.

However, if values for w 2,j are assumed, values of v2,j,

Wl, j, and T2, j can be computed by the simultaneous solution

of equations (4.4), (4.5), and (4.6) for all values of j.

The 9alues of v2, I, Wl, s, and T2, s are known from the 9ound-

ary conditions in the y direction.

For networks larger than two rows, the pattern is simi-

lar. Figure 4.2 shows a grid for a four-row format. In this

cage, for z = i along the row coinciding with w4, j, the w4, j

are defined by boundary conditions, and the initial assump-

tions are the values of w2,j. The T2, j, v2, j, and Wl, j are

determined as described above. Then values for w3, j are

assumed and T3,j, v3, j, and W2, j are computed from equations

(4.4), (4.5), and (4.6). The values obtained for T2, j

and vz, j are used in these equations. Next, with new values

of T3, j and v3, j are known values for wA,j, the values of

T&,j, v4,j, and w3, j are detezvnined from the same equations.

For grids of more than four rows, the values of w i,j are

U
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4

3 ]-- ---_-

2 [ []

1 [

Figure 4.2. Sweep Format Grid

assumed for the calculations of each row until the boundary

z = i is reached. Henceforth this marching procedure is

called "sweeping."

After the first sweep the values of T, w, and v in the

interior are not correct since they are based on assumed

values for the wi, j-

process is required.

termed "iterating."

Thus a repeat of the entire sweeplng

This process of repeating the sweep is

Iterations are continued until succes-

si'_e values of T, w, and v agree within a given tolerance.

However, relatively few iterations are required since the

values for wi, j at the previous time step can be used as the

first assumption. These values are quite near the correct

values.

After the values have converged so that all the values

are determined at the sime time level, the entire process is

repeated to obtain values of the dependent variables at an

even later time. This procedure is continued until a steady-

state is reached or until the solution is obtained for the

L
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desired amount of time.

Solution of Two Rows of Equations Simultaneously

In order to solve equations (4.4), (4.5), and (4.6)

simultaneously it is convenient to arrange the terms in a

precise way. For the moment, consider that Figure 4.3 is

an element of a grid extending in the z direction as in

2
• ,.

2 t °

I
i 2 5 4

i 2 5

Figure 4.5. Double-Row Grid

Figure 4.1. Then the three values w2, I, w2, 2, and w2, 5 are

assumed, the other boundary values are known, and the nine

values in the interior are to be obtained from simultaneous

solution of the equations, The three equations may be re-

written with the unknown values on the left-hand side and the

known or assumed values on the right-hand side.

the continuity equation becomes .

For j = 2,

7T2, I - ewi, I + ¢v2, 2 = ¢v2, I - ew2, I - _v2, 2

+ qv2, I - _w2, I + _Wl, I + _Wl, I + 7T2, I

_ (4.7)
= DP2,1 0w2,1

h



where DPi, I represents the values known from the previous

time step plus vi, I which are known from the boundary condi-

tions. Thus,

DPi, I = _vi, I - qvi, 2 - _w i + _Wi_l, I + Cv. •,i 1,1

(4.8)

The flux equation at j = 2 becomes

5T2, I + Wl, I = 5TI, I
(4.9)

and the irrotationality equation becomes

8Wl, 1 + 8v2, 2 - 8Wl, 2 = 5Vl, 2
(4.10)

For j = 5, the Continuity equation contains two unknown

values of vi, j and is

+ qv2, 2 - _w2, 2 + _Wl, 2 + 1/92, 2 = DP2, 2 - ew2, 2

(4.11)

In %his instance DPi, j

is

does not contain a boundary value and

DPi, j = qvi, j - Nvi,j+ I - _wi, j + _Wi_l, j j / 1

(4.12)

L

The flux equation is

5T2, Z + Wl,2 = 8TI, 2,

and the irrotationality equation is

_Wl, 2 + 8v2, 5 - _Wl, 5 = _Vl, 5.

(4.13)

(4.14)
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The equations at the y = i boundary are written for j = 4

in this simplified case. The continuity equation thus is

TT2, 3 - eWl, 3 + Cv2,A - ¢v2, 5 = DP2, 5 ew2,5, (4.15)

the flux equation is

6T2, 5 + Wl, 5 = ST1, 5, (_.16)

and the irrotationality equation is

6Wl, 5 + 6v2, & = _Wl, 4 + 6Vl, 4. (4.17)

o

There is only one unkno_n value of Wi_l,j_ I in equation

(¢.17) since the other is given by the boundary condition and

is on the right-hand side of t_e equation.

.In actual problems there will be many more than three
©

and one-half increments in the y direction. In this case,

however, the same nine equations are used. The y = 0

boundary equations will be the same as (4.7), (4.9), and

(¢..10), and the equations at the y = 1 boundary will be

(4.15), (4_16), and (4.17) with j much greater than four.

There will be a large number of sets of the interior equa-

tions like (4.11), (4.15), and (4.14). By a judicious

arrangements of T, w, and v in the left-hand sides of the

equations, a diagonal pattern can be obtained in the coeffi-
l

cient matrix. These equations can be written in matrix form

as in Figure 4.4, where d I through d 9 are the right-hand

sides of the equations. The equations enclosed by a dashed

line are the general set of equations for the interior points.

[
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From equation (_.18), it is noticed that the non-

zero terms of the coefficient matrix are in a narrow

diagonal pattern with the coefficients 7, 1, and _ of the

T, w, and v as the main diagonal. The width of the "band"

is five terms.

The equations in this form can be solved simultaneously

by using some pentadiagona!, algorithm 22 or by a general

24
Peaceman band algorithm. With the Peaceman band algorithm,

data to be supplied include the bandwidth, the coefficient

vector, and the excitation vector. This algori%hm requires

approximately N arithmetic operations where

- - k

N = 7k + i + _-_ (n-l). (4.19)
n=l

These operations are almost equally divided between addition

and" mul t_] _ation

Solution of Three Rows of Equations Simultaneously

Let the foregoing procedure be termed the double-row

method since the w2, j are assumed and the continuity and

irrotationality equations on two rows are solved simultan-
l

eously. It is possible to solve equations from three and

k
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four rows of points in a single solution. The continuity,

irrotationality, and flux equations may be combined in a

variety of ways.

In solving three rows of points simultaneously, the

continuity, irrotationality, and flux equations are combined

in a certain way. Figure 4.5 shows the points to be con-

sidered in the general case; the boundariss are considered

5

5

4

5

2

I

,, () C)

()

()

(

15

4

Figure 4.5. Triple-Row Grid

later. The purpose is to tie the ws, j to the TI, j and Vl, j

in such a way as to require the least amount of computer time

to sweep the entire grid solving only for values needed in

the sweep and after convergence at a given time level to fill

L



in the complete lattice with values of T, w, and v from

the three equations.

One such method for accomplishing this g0al is to write

!

the continuity equation around point i in Figure 4.5, the

irrotationality equation around point 7, and the flux equa-

tion around point 8. In this elemental grid, it can be seen

that the three equations may be written oniy in terms of

T3, j, v3, j, and Wl, j so th%t if the w3, j be assumed, along

with the boundary conditions stated along TI, j and Vl,j, the

values of T3,j, v3,j , and Wl,j can be determined. The sweep

up the grid can be effected by assuming ws, j and, using the

just-determined values of T3, j and v3,j, obtain the values of

T5, j, vs, j, and w3,j, thereby updating w3, j. In this manner

the top boundary which is known by boundary conditions can

be reached and the procedure begun again until a satisfac-

tory convergence is obtained.

In Appendix C, a system of general equations along with

boundary equations are developed. The triple-row, three-

variable general equations developed in Appendix C are as

follows:

k

--5-wi, 1 - ¢v3, 2 + 7T3, 2 + (_2#<b8

+ CVl, 2 - CVl, 3

+ ¢v3, 3

(C.lOi

_]
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e 2 S,2 6w132 T'v5, 5

- _Wl, 5 0 v3,4 = (DP3,2-DPs,3) - _w3,2

÷. 6wSj 5 + 5_rl, 5 (C.18)

l

l

l

0Ts, 2 + vs, 5 + OT5, 5 = 0

Although more computations may be involved in each simultan-

eous solution of these equations than of the two-rOW equa-

tions, values are assumed so that fewer iterations may be

required.

Another reduction in computer time may possibly be

realized by incorporating the flux equation into the contin-

uity and irrotationality equations, thereby eliminating the

vi, j and leaving equations in terms only of T i and w. .,j l,j

This reduces by one-third the number of equations, although

there is an increase in the complication of the remaining

equations• The equations are developed in Appendix C;°they

are presented in Figure C.2. The terms enclosed by a dashed

line are the general set, but it must be noted that in equa-

tion (C.50), the T 5 4 term in the general form would be un-
2

kno_ and placed on the left but in this presentation, since

S = 4 or the maximum j is four terms, it is known. The

system of resulting equations is only seven terms wide and

the diagonal band is practically full; both of these prop-

erties lend this method to a rapid solution compared with

previous methods.

U
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Solution of Four Rows of Equations Simultaneously

A quadruple-row method, a logical extension of the

triple-row method, is developed in Appendix D. Beginning
L

with the equations used in the triple-row method, the con-

tinuity, irrotationality, and flux equations are developed

incorporating four rows simultaneously. Figure 4.6 aids in

understanding the procedure.
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Figure 4.6. Quadruple-Row Grid

The overall plan in this method is generally the same

as in the triple-row method. The four rows are tied to-

gether by equations in such a manner as to be expressed only

in tez_s of T4,j, v4,j, and Wl, j. In this way, the values

w4,j may be assumed and with values TI, j and Vl, j the ....

h _J
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equations solved for T4, j, v4, j, and Wl, j. Using the T4, j

and v4, j and the assumed values of WT, j, the T7, j, v7, j, and

w4, j may be solved and so on up the grid. After repeating

this process with the updated w4, j, w7,j, etc., convergence

occurs and the points over the entire lattice may be filled

in by equations used to eliminate them before. The com-

plexity of the equations increases markedly, but the ele-

mental pattern is described.

Equations (D.I) through (D.15) can be arranged in
o

diagonal band form similar to that of the triple-row method.

The band is 15 terms wide when the equations are listed in

the order continuity, followed by irrotationality, followed

by flux: C I T. But as was seen in the triple-row method,
©

when the vi, j were expressed in terms 6f Ti, j eliminating

one-third of the equations, the time required for solution

was reduced• The resulting general equations are presented

below.

o

Continuity :

oS"l,1-_%,2 \_+--+o52 / 1,_- ,3

6_,2¢2 !.__Az+ 3_5z+ 2
_ 6_.¢+_+ o+OSZ eS_/ .L,5 4-

¢1B2¢2 _'_w 132¢2-- -- Wl 5 = DP4,3 +DP3,3+ 3__m+.;_2_ o_2/l,_ e_2 ,
l

( )21B¢ #¢(DP2 2+Dp 2 4)_ --0-6--TI,I+ --0-6+l+ _ DP2j3 - 8--6 , ,

(._2__2 6_%?'_¢+_-_:_+? + h,3
+ \ O5 -F 21B¢ + T1,2 - --_-_- + Oro •

k _,]
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402¢2 + 2[_¢ +
+ 8B 8D TI,4- --86-- TIj5 - 8w4,3

(D.20)

Irrotationality:

T4 4- OWl
e2 8 , , -

/

382¢ 07 W4 ' W4"+ _+--_6--+V6 _- -V5 s + _5(ml,3-ml, _) (D.21)

When arranged in diagonal form the two-variable quadruple-

row equations present a band of eleven or thirteen terms,

depending on the order of writing.

Methods of combining more than four rows are, from

Appendix E, extremely unwieldly. The amount of work in-

volved in setting up the coefficient and excitation vectors

for a program used to solve any method incorporating more

than four rows is prohibitive.



Chapter S. Test Problem No. i

In order to determine the number of iterations

required for convergence for the double-, triple-, and quad-

ruple-row methods, tests were conducted on two simple prob-

lems. The problem investigated first is that of steady-

state potential, T, defined as

I[_2 2]T : _ - (z-l) ....

where y and z are the horizontal and vertical coordinates,

respectively, normalized from zero to unity in both direc-

tions.

The flux definitions at steady state defined in the two

equations (3.4) are o

(5.i)

8T 8T

v-- _y : -y w : - = z - 1. c5._

The steady-state potential flow situation is shown in Figure

5.1. Solid lines represent the potential flow; and dashed

lines, the lines of equal potential. This steady-state con-

dition is approached from initial conditions of T = w = v = 0

at every point except at the boundaries at which these are

defined as follows:

w(y,1) = 0

T(y,0) : - ½(l_-y2), v(y,O) : -y

o

(s.3)
v(o_z): o

1 2
T(1,z) : _(2z-z.), w(1,z) = z - i

L 52
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Figure 5.I. Steady-State Potential Flow.

An IBM 7044 computer is used to solve the test problem

with grid sizes (R X S) of I0 × i0 for the double- and quad-

ruple-row methods and ii x i0 for the triple-row method.

(The'z direction must have 2 + i, Z + 2i, and 4 + Zi sub-

scripts for the double-, triple-, and quadruple-row methods,

respectively.) In Appendix F, computer programs for each of

the three methods are presented. Solutions were obtained

usi'ng from one to ten iterations per time step. After each

time step the time increment was increased by I0_.

From the initial conditions, it was found that seventeen

time ste_swere required to reach steady state. (The values

of T, w, and v for steady-state solution for the grids I0 x

I0 and II x i0 are presented in Appendix F in Tables F.I and

F.2.) To determine the }ninimum number of iterations required

per time step] the values of the potential at successive time

steps for each run were examined. In each instance it is

seen that the maximum error produced in the calculations was

k .]
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found at the y = 0 boundary; or at the subscripts (i,l);

therefore values of potential at (i,l) were used to compare

relative accuracies of computation. In Table 5.1, the values

of T2,1, T3, I, and T4, I are presented for the doubleT,

triple-, and quadruple-row methods, respectively, for two

to six iterations per time step at the end of time intervals

15 to 25.

From these results it.is seen readily that for four-

decimal accuracy, the number of iterations required per time

step is five for the double-row method, and only two for both

the triple- and quadruple-row methods. In Appendix F, Tables

F.•_ through F.5 contain results of the potentials determined

throughout the lattices at the seventeenth time step for

two to six iterations per time step for the three methods.

Of vital interest in selecting the most efficient method

is the time required for computer solution of the problem.

In Appendix G is presented a method for determining the num-

ber of cycles required to perform the calculations, i.e.,

addition, subtraction, multiplication, and division, for a

given grid size and a given number of iterations per time

for the various methods discussed. Table 5.2 shows the re-

sults of these calculations _or the number of cycles required

for solving two equations (continuity and irrotationality)

for two unknowns (T and w), the v having been eliminated in

terms of other T and w values by the flux equation. The



V

'Time

Step

Table 5.1.

2

Iterations

Potential at Iteration and at Time.

3 4 5 6

Iterations Iterations Iterations Iterations

15
16

17
18

19
20

21

22

23

15
16

17
18

19
2O

21

22

23

15
16

17
18

19
2O

21

22

23

-.39885

-.39882

-.39895

-.39874

-.39906

-.39866

-.39915

-.39860

-.39919

-.32568

-.32583

-.32593

-.32601

-.32607

-.32612

-.326!7

-.32620

-.32623

-.23212

-.23226

-.23235

-.23244

-.23251

-.23256

-.23260

-.23263

-.23266

m2_%_i (s.s.

-.39886

-.39884

-.39888

-.39886

-.39889

-.39888

-.39889

-.39889

-.39888

T31 (S. S.

-.32617

-.32627

-.32631

-.32631

-.32631

-.32630

-. 32631

-.32628

-.32630

T41 (S.

-.23281

-.23279

-.23279

-.23276

-.23274

-.23272

-.23271

-.23271

-. 23269

= 0.39889)

-.39887 -.39888 -.39888

- 39889 -.39889 -.39889

- 39890 -.39890 -.39889

- 39889 -.39889 -.39889

- 39889 -.39890 -.39889

- 39890 -.39889 -.39889

- 39889 -.39889 -.39889

- 39890 -.39889 -.39889

-.39889 -.39889 -.39889

= 0.32628)

-.32610 -.32611 -.32611

-.32621 -.32621 -.32621

-.32624 -.32625 -.32625 .....
-.32626 -.32630 -.32627

-.32627 -.32681 -.32627

-.32627 -.32723 -.32627

-.32627 -.32736 -.32627

-.32628 -.32757 -.32628

-.32628 -.32764 -.32628

S. = 0.23269)

-.23261 -.23266 -.23265

-.23264 -.23269 -.23267

-.23266 -.23269 -.23268

-.23267 -.23269 -.23268

-.23267 -.23269 -.23269

-.23267 -.23269 -.23269

-.23268 -.23269 -.23269

-.23268 -.23269 -.23269

-.23268 -.23269 -.23269

i

I

I
h
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triple-row method effectively reduces the cycles required

by the double-row method by 66_ and the quadruple-row method

Table 5.2. N_mber of Cycles Required.

Method Grid Size Number of Cycles

Double-row i0 x i0 211,800

Triple-row ii X I0 72,900

Quadruple-row i0 x I0 95j300

reduces it by 57_. Therefore, the triple-row method, with

only,two iterations per time step is the optimum procedure.

._J

g



Chapter 7. Test Problem No. 2

The model problem developed in Chapter 5 is purely an

ideal representation of an unsteady-state elliptic problem.

More realistic is a problem developed to possess certain

characteristics present in a particular oil flow through a

porous anisotropic medium, an oil reservoir. Such an example

is the following problem.

Let Figure 7.1 represent a two-dimensional cross section

of a reservoir in the earth where the z axis is vertical and

the y axis horizontal. T represents the value of the poten=

tial which may in this case be pressure or a linear function

t .

Z

z=l.O

.I
z 0

y=O y=20

Figure 7.1. Oil Reservoir Dimensions

thereof. The z extends from 0 to unity vertically repre-

senting a normalized length and y extends from 0 to 20 rep-

resenting a reservoir which may possibly be twenty times

l

longer than high _n cross section from the outer boundary to

the producing oil well. Ass_ling that in_ediately above

L 6z .]



I- 62-1

the oil reservoir (porous medium) there is a salt dome or a

gas cap across which no oil flows vertically, the w at the

top boundary may be equal to zero. This satisfies the

boundary condition along the z = i boundary, convenient to

the nomenclature used in the model problem. It is also

desirable from a realistic point of view for w to be a maxi-

mum at z = 0, y = 0, and to approach zero at the well, y =

20. This condition is easily described by the equation

w(z,y) = (l-z) (20-y)/20. (7.1)"

For the problem to be defined properly, i.e., with

.... enough boundary conditions, T or a derivative thereof must

be defined at two boundaries of z and of y. Defining w in

equation (7.1) is tantamount to defining T at the two bound-

aries of z, and since T is defined at the boundary y = I,

either the derivative, v, or the potential itself, T, must

be defined at one point along y = 0. (Defining w along y =

0 fixes the T elsewhere along y = 0.) Therefore, asstnme T =

b at y = 0, z = i. The problem is now defined in accordance

with a few characteristics of an oil field reservoir in the

vicinity of an oil well. The equations useful for formulating

the problem are developed in Appendix I, resulting in a

steady-state equation for potential:

3 2

T _Z_ Y
= i_0 _ 2

zyz2 - o+ 2-6 + b(1-y/2O) - z

2

+ + + 6.6516667 y. (1.12)

k -]



In order that v(0,1) = 0, the value of b in equation

1.13 is selected as b = 133.3333. With this value, the

steady-state condition, as shown in Tables J.i and J._ for

T, w, and v, for the grids i0 x i0 and ii × i0 is approached

from initial conditions of T = w = v = 0 at every point

except at the boundaries where

w(y,l)= o

T(y,0) = y3/120 - y2/2 ÷ i33.83333 - 0.025 y

v(y,o) = o.o2s + y - y2/ o
o(7.2

v(O,z) = z2/_o - z/2o + o.o2s

T(20,z) : 0

• : o.

J

I

i

•Solutions were attempted using from one to ten iter-
a

ations per time step. As in the first test problem, At, the

time increment, was incremented 10% at the end of each time

step. From the initial condition, it was found that 37 time

steps are required to reach _A.. _÷_

From Table 7.1 it is seen again from the values of

at the end of time intervals 35 to 4Q,
T2,1, T3, I, and T4, I

that five iterations per time step are required when the

double-row method is used, two for the triple- and quadruple-

row methods. In Tables J.3 through J.ll are shown the re-

sults of the potential and the w flux determined throughout

the lattices at the 37 th time step for four to six iterations

per time step for the double-row method, and two to four

iterations per time step for the triple- and quadruple-row

_ethods. _J
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Table 7.1 Potentials for Iterations at Time

Intervals for Test Problem No. 2.

I

Time Step 4 Iterations 5 Iterations 6 Iterations

T2, 1 (S.S. : 133.17)

35 133.16 133.16

36 133..16 133.16

37 133.17 133.17

38 133.15 133.17

39 133.19 133.17

40 133.14 133.17

133.16

133.17

133.17

133.17

133.17

133.17

Time Step 2 Iterations 3 Iterations 4 Iterations

T3, 1 (S.S. = 133.10)
_ r .

35 133.00 133.01 133.01

36 133.05 133.06 133.06

37 133.07 133.08 133.08

38 133.o9 133.09 133.09

39 133.09 133.10 133.10
40 133.1o 133.10 133.10

Time Step 2 Iterations 3 Iterations 4 Iterations

T4, ! (S.S. : 133.01)

35 132.98

36 133.00

37 133.01
38 133.01

39 133.01

40 133.01

132.97 132.96 "

132.99 132.99

133.01 133.00

133.01 133.01

133.01 133.01

133.01 133.01

L



Chapter 8. Conclusion

An efficient numerical method for the solution of un-

steady state elliptic partial differential equations,

particularly advantageous for anisotropic problems, has

been developed. The method was further refined to reduce

the amount of computer time required through an arrange-

ment of multiple groupings of equations describing the given

problem. When two equations, the continuity and oirrotation-

ality equations, were solved, _n_.....__ of _y_1_s.... reauired_

fell from 211,800 for the double-row method with a grid of

!O × !O to 72_900 for the triple-row method with a grid of

Ii x lO. This was optimum since with the quadruple-row

method, 95,300 cyclei were required for a I0 × i0 gridoand

...._ multiple rows were unfeasible. Therefore the triple-

row method effectively reduced the computation time by 66_.

The quadruple-row method reduced the computation time by

57 .

Through an analysis of round-off error it was discovered

that with increased numbers of points in the implicit direc-

tion, the error in calculation increased, but with increased

ratios of implicit to explicit increments (R = Ay/Az), the

error decreased. Therefore, upon proper selection of incre-

ment size and number, a desired accuracy may be achieved.

The application of the multiple row methods to the oil

reservoir problem produce.d the same results regarding num-

bers of iterations required per time step for stability. The

L • 65 _I
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double-row method required five iterations per time; the

triple-row and the double-row methods required only two.

Consequently, for unsteady-state problems, especially

those for which the ADI procedure is inefficient, i.e., for

_y/Az _ I, a stable efficient method has been developed.

L d



F

L

A

a

aij

B

b

C

cI-V

C

D

d

d

E

Ec

E I

e

F

f(x)

f

G

gCx)

h

I

K

Nomenclature

Coefficient matrix

Constant

ComPonents of A

Point-Jac obi matrix.

Constant

Point-Gauss-Seidel matrix

Constants of itegration

Constant

Diagonal matrix of A

Constant .

Excitation vector

Lower triangular matrix

Error in Checkerboard analog of

continuityequation

Error in checkerboard analog of

irrotationality equation

Error in ........._oard __ _ fT_Y _q_nn

Constant

Upper triangular matrix

Function of x

constant

I-A mitrix

Function Of x

size of mesh square

Identity matrix, number of iterations required

Dissipation constant

67
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Nomenclature (Continued)

L

K r

k

L

M

m

N

n

R

R o

q

T

t

U

U

V

W

X

X

Y

Z

CZ

T

B

E

Reservoir of potential

Index of diagonals parallel to main diagonal.

Lower triangular matrix

Iteration matrix-

Time iterate

Number of numerical operations required

Number of rows, columns, unknowns, or equations

Ratio Ay/Az, n_nber of increments in z direction

Optimal ratio R

N_b_r of increments in y direction

Potential

Independent variable, timevariable

Upper triangular matrix

Dependent function

Horizontal flux
i

Vertical flux

Unknown vector

Independent variable

Horizontal coordinate, independent variable

Vertical coordinate,, independent variable

Constant

1/Ay

a/ t

ll z

Error vector

o
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Nomenclature (Continued)

e

P

¢

#

i

J

m

t

X
Q

Y

#

_(½-_), canonical independent variable

Estimate of eigenvalue

Canonical independent variable

Density

Potential

i

Relaxation factor

Number of cycles of computation required

Subscript_

Coordinate in horizontal direction

Coordinate in vertical direction

Time interate

Differential with respect to t

Differential with respect to x

Differential with respect to y

Superscripts

-i

m

!

Auxiliary vector iterate

Inverse of matrix

Time iterate

Error in centered difference as opposed to

checkerboard analog
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A numerical solution of a transient shock wave problem*

J. W. WATTS:[: and D. U. yon ROSEN BERG

Tulane University. New Orleans, Louisiana 70118

(First received 2 February 1968; in revised fimn 20 May 1968)

Abstract-A numerical method for solving one-dimensional, compressible flow problems including
locating and following shock waves is described. This method uses a small amount of computer
storage, and complete problems can be computed in a few minutes on an IBM 7044 computer. Results
of a problem for the discharge of air from a duct are presented.

INTRODUCTION

PHYSlCAt, systems in which dispersion is small

are fairly common. Several examples are com-
pressible fluid flow, water flooding in oil reser-

voirs, and convective transfer in heat exchangers.

A distinguishing feature of these systems is the

fact that their describing variables tend to

develop regions of steep gradients, called shocks.

When these systems are studied mathe-

matically, it is usually assumed that dispersion

becomes zero, causing the describing equations

to become hyperbolic. As a result the regions of
steep gradients mentioned above become finite
discontinuities. There have been several efforts

,. _olv,_ ,h...... t,_ n;fr ...... methods,........... sj o_,.ms by ...........

most of .........WIUI.51Iiuvolve smearing the shock over
a finite interval[I,2]. For this reason these

methods do not represent the shock very

accurately.

Recently several hyperbolic systems have been
studied using the centered difference method,

originally developed by Wendroff. The results of
these studies indicate that the centered difference

method is accurate as long as the solutions

contain only small discontinuities. As these

discontinuities grow, the solutions develop

oscillations, making them of little value.

In this paper the centered difference method

is modified to yield accurate description of
shocks, and the modified method is demonstrated

on a typical physical problem.

SYSTEM AND EQUATIONS

The physical system chosen for study is the

discharge of an ideal gas from a duct, depicted in

Fig. 1. The duct is open at one end, closed at the

other. Originally the contents of the duct are at a

higher pressure than the surrounding reservoir.
At time zero the fluid in Lhe duct is allowed to

start flowing into the reservoir.

V Reservmr

=Y

Fig. I. Schematic of duct.

If flOW is assumed one dimensional and isen-

tropic, the following dimensionless equations
result.

i_Z ,'JV i_Z
Continuity - ( 1a)

i_W # Y i_Y

Momentum OV jJV _, _Z
aW- _ Si:-- exptztr- 1)],-_

(Ib)

*This work has been partially supported by NASA Contract NAS8-20136 issucd ;,, Marshall Space Flight (enter.
Huntsville. Alabama.

SPresent address: Mobil Oil Corporation, Dallas, Texas.

49

( .F.S '_ol, 24No. I --D



J. W. WATTS and D. U. von ROSENBERG

Initial conditions

Boundary conditions

in [1 - Z--_V" (

V(Y, 0) = 0 (2a)

Z( Y, 0) = Z0 (2b)

V(0, W) = 0 (3a)

Z(I, W) = 0for

V(I, W) /> 0 (3b)

l
Z(1, W) - ×

y--I

1, W)] for V(I, W) < 0 (3c)

where Z = density = In(p/p,.)

V = velocity = u/a,.
Y = distance = X/L

W = time = a,.t/L

7 = ratio of heat capacities.

When a shock forms, the flow conditions be-

come discontinuous at the point of the shock.

The relationships between the dependent
variables on either side of the shock are given by

the Rankine-Hugoniot equations[3]. These are
modified from their usual form to suit the

particular definition of the variables.

Z'-Z = lnF

where

V'- V=_-AMs

y+lp'
lq

y-lp
F--

3,+ I p'
I-

y--1 p

p = pressure

M," = sh°ck Mach number = _(Y--_y l p'p

(6)

A = sonic velocity = exp(Z-_ --_Z).

Primed wiriables are evaluated behind the

shock: unprimed variables in front of it. The

velocity of the shock is given by

W, = shock velocity

= V--AM, shock moving left

= V+AM._ shock moving right.

The pressure ratio in terms of dimensionless
density is

p'
--= exp[y(Z'-Z)]. (8)
P

This expression is true for no entropy change
across the shock, and shocks are irreversible.

However, Rudinger[3] states that Eq. (8) can

always be used when the pressure ratio is less

than 1.5 and the errors are unimportant in many

cases for ratios as high as 2.5. For the problem

studied the pressure ratio across the shock did
not exceed 1.85; so Eq. (8) was used in all cases.

KNOWLEDGE OF SYSTEM REQUIRED

It would seem that almost complete knowledge

of the system to be studied must be known

before the problem can be solved. Equations

(la) and (Ib) give no indication that a shock

will form or that the sonic velocity is of any

significance to this problem. However, the for-

(4a) mation of and movement of the shock are actually

indicated if these equations are solved numeri-

(4b) cally without a provision for the shock. This
occurrence is discussed in an earlier paper[4].
The formation of the shock can be located from

this solution by trial and error. To do this, one

would compute solution profiles which would in-

(5) dicate the approximate time and location of the
shock formation. The moving mesh point would

be introduced in the same manner as discussed

below, and the profiles recomputed. The initial

guess of shock strength and location would

probably be slightly incorrect, but these could

be refined by trial and error until satisfactory

accuracy was obtained.

in most practical cases the initial shock forma-
(7)

tion and pressure ratio will be either known or

easily determined by some simple means. For the
problem discussed in this paper, it was determined
that the shock formed at the outlet of the duct at

5O



Anumericalsolutionofatransientshockwaveproblem

thetime when the exit velocity decreased from
its initial value. This is the time that the initial

characteristic, which started from the exit at the
time the flow started, returns to the exit of the

duct after being reflected from the closed end.

This same knowledge of the system must be

available before any type of solution can be ob-

tained. In the solution of this problem by the

wave diagram method, Rudinger[3] requires this

knowledge of the system. In fact, Rudinger's
solution is much less exact because he shows the

shock forming in the interior of the duct at a time

later than it actually forms. The numerical solu-

tion thus provides an accurate quantitative de-

scription of the behavior of the system from a

knowledge of the governing equations and the
criteria for shock formation.

CENTERED DIFFERENCE METHOD

The centered difference method was originated

by Wendroff and was later applied to physical

problems by Herron and von Rosenberg and von

Rosenberg et a1.[4-6] The method is based on

second order correct finite difference equations

centered in time and space, which for the system

studied herein, are the following:

Continuity

Zi,n+l + Zi+l,n+l -- Zi,n -- Zi+l,n

2AW

Vi+l, n -_- Vi+l,n+ 1 -- Vi, n -- Vi,n+ 1

2AY

--Vi+l/2.,l+l/2[ Zi+l'nJt- Zi+l'n+l--Zf'n--Zi'n+l] (9)
2AY

Momentum

Vi.,,+l + Vi+t.n+l -- Vi..-- V,+l.,,

2AW

=-Vi+il2,11+112[ Vi+l'n + Vi+l'n+l-2Ay Vi'n-- Vi'n+l]

-- e(Y-1)Zi+l/2.tWrl/2

(10)

where i is the space index = y/Ay
n is the time index = W/AW.

The dependent variables at the centered point are
the arithmetic average of their corresponding

values at the four surrounding points.

There are two equations associated with each

space increment, or a total of 2N equations to be
solved, where N is the total number of space

increments. These equations are nonlinear and

must be solved iteratively. First, velocity and

density profiles at the new time level are assumed,
and the nonlinear coefficients, Vi+l/2,n+1/2 and

e(_-_)zi+l/2,,_/2,are calculated. Then, the 2N

equations are solved simultaneously using

the bitridiagonal matrix inversion algorithm

developed by Douglas, Peaceman, and Rachford

[7]. This yields improved values of the dependent
variables at the new time level, which are used to

recalculate the nonlinear coefficients. This pro-

cess is repeated until convergence is obtained.

REPRESENTATION OF THE SHOCK

When a shock forms, the centered difference

method must be modified. In this modification

the shock is represented by a grid point which
moves with the shock as it travels down the duct.

The dependent variables are double valued at

this point, one value being associated with con-
ditions immediately behind the shock, the other

with conditions immediately in front of it. This

shock grid point moves through the mesh of
stationary grid points. As a result the finite dif-
ference elements on either side of the shock are

trapezoidal in shape, whereas the others are
rectangular. This situation is shown in Fig. 2.

I I \ I
n*l --X_X-X_X_ --

t I \1 I

i-I i S i+l 1+2

Y

Fig. 2. Finite difference elements near the shock.
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Because the finite difference elements adjoin-

ing the shock are not rectangular, modified
equations had to be derived for these elements.

The equations to the left and right of the shock

are analogous. The set of equations applying

immediately right of the shock is given below.

Z_.,. i+ Z, 1.,,_i + Z'.,, - Z_ 1.,,

2AW

-t Y._.,,- Y._.,,_i[Zi+i.,,+ Z_+i.,,+i-Z:,,,-Z:.,+il2Awt_ 2_+IZY_,_ Z- Y._.,_+1 j

Vi_ l.tt-_ |"i+l.tt+ 1 -- V,_.tt- t:,_.. -) !

2Yi+l- Y.,.,,-- Y._.... 1

-:, FZi,, ,,+ Z i+j .... _- Z,'. ,, - Z._.,,_ ,]

Equation (12) becomcs

V'.,.,,+l+ 1",_,.,,+!- V;.,,- V_+j.,,
2AW

+ t

:_,;, [v,+,.,,+v,+,.,,+,-v.z.,-v:,.,+,1

-e(>-"/ .......... LfZ'+''+Z'+''+'--Z'"'-2-_+_ --_ Y., ;---- Y_., +;Z;'"+']-J

(12)

where Y .... = value of Y on shock point at the
old time level

Y.,.,,, _ = value of Y on shock point at the
new time level

1/;+112,:,+1/2 = ;t_ V.;.tl-{- V_,#)+, + Vi+l.#/--[- V,_ t I,.+l

t
Z_ ,/.,.,,), _..,= _ (Z',, + Z.,.,, _, + Z_+ ,.,, + Z_+ !., +, ).

The relationships between the double values

of the variables at the moving mesh point are

given by the Rankine-Hugoniot equations.

Z_-Z. = InF (13)

I-F
' _ -- -AM_.V, -- I ., F

The analogs presented above are written about a

point which is centered in time at the time value

of w,,+(Aw)/2. The space position of this

point is a distance to the left of Y_.! equal

to the average of the space increments at the

two time levels. This value is Y_+,-(Y._.,,+

Y_.,+,)/2. These analogs were found to be the

highest order correct analogs for this trape-
zoidal area and also the most convenient to use.

Several other points, including the center of

mass of the trapezoid, were investigated.
As mentioned above, the shock moves across

the stationary finite difference mesh. 7he set
of equations associated with the particular incre-

ment through which the shock is moving is

replaced by three sets, which represent the

trapezoidal element left of the shock, the

Rankine-Hugoniot equations across thc shock,

and the trapezoidal element right of thc shock.

Four unknowns are added to the system-the
values of V' and Z' behind the shock and the

values of V and Z in front of the shock. The

addition of these equations and unknowns does

not change the method of solving for the

dependent variables at the new time level.

DETERMINATION OF THE SHOCK STREN(iTH

The computations described above assume
the pressure ratio across the shock to be known.

Actually this quantity changes with time

and must be calculated at each time step. This
calculation requires a determination of the pres-

sure immediately in front of the shock, p. The

following rationale is used in this determination.

in compressible flow systems, disturbances

are propagated at sonic velocity, whereas shocks

move faster than sonic velocity. Therefore, a
shock moves faster than the disturbances it

propagates and has no effect on flow in front of
itself. For this reason the solution to the dif-

ferential equations in the region of the duct in

front of the shock is unaffected by the presence

of the shock. In particular, the pressure im-

mediately in front of the shock is independent of
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the shock. This pressure can be calculated from
knowledge of the solution profiles at previous
time level and the location of the shock at the

new time level.

This calculation can actually be implemented

in several ways, and the particular method used
is not important. It was chosen to use an adapta-

tion of the method of characteristics as developed

by Streeter et al.[8]. A detailed description of

these calculations is given elsewhere [9].

The calculation of the pressure in front of the

shock is used in the following iterative scheme

for determining the pressure ratio across the

shock.

I. To start the calculations, a pressure ratio
across the shock is assumed.

2. The shock velocity and location of the new
time level are calculated using the following

relationship

Ys,,+1 = Y,., + W_AW.

3. Solution profiles at the new time level are

calculated using the bitridiagonal algorithm.

These profiles include the density behind

the shock, from which the pressure behind
the shock is obtained.

4. The density in front of the shock is cal-
culated as described above. This calcula-

tion is based only on solution profiles in
front of tbe shock at the old time level.

5. An improved pressure ratio across the
shock is calculated using the results from

Step 3 for the pressure behind the shock

and from Step 4 for the pressure in front
of it.

6. Steps 2-5 are repeated until the pressure
ratio across the shock does not change
between successive determinations.

Due to the complexity of the above iteration

process, the properties of its convergence
cannot be studied theoretically. However,

results obtained on the digital computer demon-

strate convergence. At first glance the process

might appear awkward and time consuming,

but this is not actually the case. As mentioned

above, the centered difference method requires

iteration on the nonlinear coefficients. When

the two iterations are performed simultaneously,

only a small increase in computational time is

required.

RESULTS

The methods described above were pro-

grammed for the digital computer, and a run was

made using 80 space increments with y = 1.4 and

Z0 =0"7409. The results of this run are pre-
sented in the form of velocity profiles at in-

creasing values of time (Figs. 3-5).

0e

_o_

i°.

 011
0 0.2 o4 0.6 08 I.o

Oimen.__..,z_,ts _,_t_e: y

Fig. 3. Velocity profiles w = 0.25 to w = 1.00.

Soon after the physical process is started, the

exit velocity reaches 0.8 and remains at this
value until W= 1.5. At this time the exit

velocity starts to drop and the shock forms at

W= 1.52. As time goes on, the shock grows

in magnitude and moves toward the closed end

of the duct, reaching it at W = 3.0. The shock
is reflected from the closed end and moves

toward the open end, leaving the duct at W =
4.40.

Although it is not presented here, at W = 6.08
a second, weaker shock forms and passes down

the duct and back out. Eventually a third, still

weaker shock goes through the duct, then a
fourth, and so on. The third and successive

shocks are weak enough not to require the
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w=l'2'
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Fig. 4. Velocity profiles w = 1.25 to w = 2-9725.

I.o

w,4.71

moving grid point. Good representation of them

can be obtained using the unmodified centered
difference method.

CONCLUSION

An efficient means has been developed for

solving hyperbolic partial differential equations

including shocks. In particular, the method

developed gives very good representation of the
shock. There is no reason this method could

not be extended to other sets of equations.

The only requirement would be relationships

equivalent to the Rankine-Hugoniot equations

for the particular system under study.

NOTATION

a speed of sound

A dimensionless speed of sound

F function defined in Eq. (5)

i index in space

L lengthofduct
M._ shock Mach number

n index in time

p pressure
t time

u velocity

V dimensionless velocity
W dimensionless time

W._ dimensionless shock velocity
X distance from the closed end of the duct
Y dimensionless distance from the closed end

of the duct

Z dimensionless density

Greek letters

y ratioofthe heat capacities

p density

02 0.4 0.6 08

Dimensionless (lislonee, y

Fig. 5. Velocity profiles w = 3.25 to w = 5.25.

I-o

Subscripts

r evaluated at a reference condition

s evaluated at the shock

Primed variables are evaluated behind
shock.
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APPENDIX

A. initiai iocation of the shock

The method used to determine the pressure ratio across

the shock is described above. This method is self-correcting

in the following respect. If the grid point representing the
shock falls behind the actual location of the shock, the

pressure ratio automatically increases, speeding up the grid

point and causing it to overtake the shock. Similarly, if

the grid point gets ahead of the shock, the pressure ratio
decreases and the mesh point is overtaken by the shock.

This feature of the solution was demonstrated experi-

mentally by introducing the moving grid point into the

numerical solution a short distance away from the shock. As

the numerical solution progressed, this condition quickly

corrected itself, with the moving point coinciding with the

shock after a few time steps. Thus to introduce the moving

point into the numerical solution, it is necessary to know

only approximately the time and location of shock formation.

Actually these can be accurately determined as described
below.

From wave theory it is known that the shock forms at the

open end of the duct. It starts off with an infinitesimal

magnitude and grows as it moves down the duct. Thu_, only
the time of formation must be determined.

When the physical process is started by allowing fluid to

flow out of the duct, an expansion wave travels from the

open end toward the closed end. Upon reaching the closed
end, this wave is reflected and travels back toward the open

end. The shock forms when this wave reaches the open

end of the duct.

To introduce the shock initially, one computes the time

that this wave reaches the open end as a part of the numerical

solution. The moving point representing the shock is inserted

at this time with a unity pressure ratio across the shock. From

this point the shock automatically grows and moves into the
duct.

B. The crossing of a stationary mesh point by the shock

As the shock moves down the duct, it periodically crosses

one of the stationary points. In this situation, the shock is on

opposite sides of the stationary mesh point at the old and

new time levels. This stationary point is ignored, and the

finite difference equations are written about two larger

elements, as shown in Fig. 6. Solution profiles at the new time

level are computed just as before. Then the values of the

dependent variables at the stationary point which was ig-

nored are obtained by interpolating between the points on

each side of it. As the shock velocity increases, the shock

could cross two mesh points during a single time step. This

event is prevented by decreasing the time step size as

necessary.

I \ I I
n+l --X--X--X X--

n --X g--X-- X-

i ii _\ illi-I

Y

Fig. 6. Shock crossing a stationary mesh point.

C. Reflection of the shock from the closed end of the duct

When the shock reaches the closed end of the duct, it is

reflected and starts traveling toward the open end. To get

the shock reversed, it is necessary to calculate the pressure

ratio across the shock just after reflection.
At the instant the shock reaches the closed end, the velocity

left of the shock is known to be zero due to the Y= 0

boundary condition. In addition the velocity and density to

the right of the shock are known from the solution profiles

(the time step is adjusted so as to have the shock exactly

at Y = 0 at the new time level.) Thus Z, V, V' are known

and Z' can be calculated using the Rankine-Hugoniot

equations. Using these values of Z and Z', the pressure ratio

is calculated by Eq. (8).
After reflection the shock travels back to and out of the

open end. Eventually a second, weaker shock forms, then a

third, fourth, and so on. The computational procedures are

the same for each successive shock.

R6sum6-On d6crit une m6thode num6rique pour r6soudre les probl_mes de courants compressibles

unidimensionn6s, y compris les travaux de localisation et de poursuite des ondes de choc. Cette

m6thode n'emploie qu'une faible quantit6 de donn6es h emmagasinage par ordinateur et les probl_mes
entiers sont r6solus en quelques minutes par un ordinateur IBM 7044. On pr6sente les r6sultats d'un

probi_me pour la d6charge d'air _ partir d'une conduite.
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Zusammenfassung - Fine numerische Methode zur L6sung eindimensionaler Str6mungsprobleme bei
komprimierb:lren f:lii_sigkeilen einschliesslich Iokalisierter und nachfolgender Stosswellen wird

beschrieben. Bei dieser Methode ist die Speicherleistung des Rechners nur zu einem geringen Grad
erforderlich, and xollst_indige Probleme k6nnen auf einem IBM 7044 Rechner in wenigen Minuten

ausgearbeilet vverden. Die Ergebnisse eines Problems hinsiehtlich der l+uftabgabe aus einem Schacht
werden angefiihrt.
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NUMERICAL SOLUTION OF CHAPJ_CTERISTIC EQUATIONS FOR TRANSIENT,

COMPRESSIBLE FLOW

Introduction. The method described by Watts (1) for the

numerical solution of transient, compressible flow including

shock waves is a satisfactory one. However, it differs some-

what from a solution obtained by the method of Warmbrod and

Struck (2). This difference may be caused by the neglecting

of entropy variations in Watts' model. Also, since the

characteristics are used to follow the shock in the solution

by Watts, there is some advantage to solving the characteristic

equations rather than the equations in terms of the physical

variables.

Development of Characteristic Equations. Three differential

equations are needed to describe a polytropic flow. The

partial differential equations which describe this flow are

well known and are derived from material, force, and energy

balances. The properties of the fluid are taken to be those

of a perfect gas with constant heat capacity so that the

equations will be less complex.

The differential equations are often expressed in terms

of the fluid velocity, u, temperature, T, and density, _.

With the independent variables of length, x', and time, t',

the equations are



£n p _ _n p + 9u
_t' + u x' _-_. + Fu = 0 (i)

_t' + U%x' + _x' P-_--_T= 0 (2)

y-i _t' + U_-T ] - %' _t'
+ U

_,n p
_x'

0 (3)

The physical properties of the fluid enter the equations

through the specific gas constant, R, and the heat capacity

ratio, Y. The function F accounts for the geometry of the

duct and is defined as

i dB

F = B dx' (4)

where B is the cross-sectional area of the duct. Area changes

with time are not included in these equations.

When certain types of boundary conditions are imposed,

shocks form and move in and out of the duct. Some of the

d__1_e< in obtaining solutions to .... " _ flow

problems lie in determining the time and place of formation

of these shocks and in following their motion through the

duct. The extent of the discontinuity in each of the dependent

variables is related through the appropriate _,an_,zne-lmgonzot'_-_-" _ . "

equation, which can be found in any text on compressible flow,

suc]_ as Rudinger (3) .

A number of ne_; variables can Le defined; one of the

more fundamental of these variables is the sonic velocity, a,

which is defined as



-<: 3

a = /yRT (5)

or in dimensionless terms as

a
A -

ao
(6)

where a o is the sonic velocity at some reference state.

The entropy of the fluid above that at the reference state

is also used. A convenient diraensionless entropy, S, is

defined as

S I

S "-

y]{
(7)

where S' is the dimensional entropy.

_.'wo variables, known as the _" "_.,leJ_anr" variaLles or

characteristics, are to beutilized in this method of

solution. These are defined as

and

2
P - A + U

y-i
(s)

2

Q = }---i-A - u

where the velocity
U

U -
ao

The governing equations can be expressed in terms of

these new varla:_les as

_P
at_P + (u + _)G£ + FZ:U - A 2 ax_-qs : o

(9)

(10)



__ _Q 2 _S
_Q + (u - A)_-_ + FAU + A -- = 0
_t _x (ii)

---_ + U v___ : 0 (12)8t _x

The length and time have been made dimensionless in these

equations, with

X !

x- L (13)

a t'

t - 0
L (14)

where L is the length of the duct.

The numerical solution of these equations by the centered

difference method is much like the method described by Watts.

Boundary conditions are known at each end; so the implicit

difference method requires the simultaneous solution of all

the finite difference equations in the three variables, P, Q,

and S. This is accomplished by an algorithm for a tri-

tridiagonal set of equations (4).

Alternate Method of Treating Shock. The Shock will be

represented by a pair of points which move through the fixed

grid just as was done by Watts (_). The speed of the shock

at the new time level, and, thus, its location, will not be

known. However, a value for its speed will be assumed, and

its location at the new time will be known subject to this

assumption. A series of computations will be made from which
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a new value of the shock speed is obtained. This procedure

will be repeated until convergence is obtained.

For weak shocks, the value of the Q characteristic

remains constant as the shock moves in the negative-x

direction, and the value of the P characteristic is constant

across this shock. Consequently, a much simpler method of

computing the characteristics at the shock is proposed.

Since the value of Q is known at the new time level on the

upstream side of the shock, the finite difference equations

upstream of the shock can be solved simultaneously using

this value of Q as a boundary condition. The solution of

these equations will yield tn_ value of P at the upstream

side of the shock. For weak shocks, this is also the value

of P on the downstream side of the shock. With this value

as a boundary condition, the finite difference equations

downstream of the shock can be solved simultaneously.

value of Q on the downstream side of the shock will result

from this solution; so that values of U and A and the shock

Mach number, M, can be obtained. These values yield a new

estimate for the shock speed, w s, at the new time level.

If this value agrees, within a pre-set tolerance, to the

assumed value, the computations are completed at the new

time level. If not, this new estimate for w s is used and

the iteration is continued.
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For weak shocks moving in the positive x-direction, the

value of P in front of the shock remains almost constant,

and the value of Q is almost continuous across the shock.

Thus the same procedure can be used.

For stronger shocks the exact equations for the change

in P and Q across the shock must be used. The details of

the method of treating stronger shocks have not been completed.

However, any such method will involve the simultaneous

solution of the Rankine-Hugoniot relations with equations from

the finite difference grid. Also, some iteration will be

necessary.

Progress on Solution. The numerical method has been developed,

and a computer program is working for the numerical solution

• of equations (10), (ii), and (12). The program for treating

weak shocks is being written at this time. This project

should be completed within a few months.



Nomenclature

a - local speed of sound - / yRT

a - speed of sound at reference temperature
0

A - a/a
o

B - cross sectional area of duct

I dB
F

B dx

L - length of duct

M - Mach number of shock

2
P - --A + U

y-I
2

Q - y_---_A - U

R - specific gas constant

w -U
S

A

S' - entropy of gas

S !
S -

yR

T - temperature of gas

t' - time

t - a t'/L
0

u - velocity of gas

U - u/a
0

w s - speed of shock

x' - length coordinate

x - x'/L

Y - ratio of heat capacities

p - density
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Section V

Molecular Sieve Adsorption Problem



NUMERICAL SOLUTION OF MICROSCOPIC-_IACROSCOPIC SYSTEMS

Introduction. The adsorption of a component from a gas stream

by a bed of solid particles is a complex process. Yet, a

knowledge of this process is necessary for the design of mole-

cular sieve beds to remove carbon dioxide from the atmosphere

of space vehicles and for the prediction of the behavior of

these beds. At the request of the Propulsion and Vehicle

Engineering Laboratory at Huntsville such a study was under-

taken as part of the work performed under contract NAS8-20136.

The processes of adsorption and then desorption to

regenerate the bed are carried out under different conditions;

so the two processes were described by different models. A most

complete description of the adsorption model will be presented

first, and then the differences of the desorption model will

be discussed.

• he Adsorption Models A mixture of _ ....... v,,_ _a• ,_ _.,, _._2 _n, ....

carbon dioxide is flowed through a column packed with molecular

sieve beads. During this process the carbon dioxide is adsorbed

onto the surface of the beads and diffuses through pores into

the interior of the beads. Heat is released onto the solid as

the carbon dioxide is adsorbed. The solid and gas are, conse-

quently, at different temperatures; so heat is exchanged between

the two, and heat is conducted and convected down the bed.



Although the temperature, pressure, and molecular weight of

the gas vary, the effect of these on the gas density is assumed

small so that the velocity of the (]as is taken to be constant.

For these conditions, a material balance on carbon dioxide

in the gas phase yie].ds

P k a(p - ps) - + u --'- (I)fp _t _x
g

All the symLols are defined at the end of this paper. The

first term in this equation represents the transfer of carbon

dioxide from the gas phase to the surface of the solid particle

under a partial pressure driving force. The term Ps is the

partial pressure of carbon dioxide whic]l is in equilibrium

with the loading of carbon dioxide on the surface of the solid

particle.

A heat Lalance on the gas phase yields

! _T _T

T T o g + ¢,' ro_h a( .- - _) - a+ u-z_-_ "-'

The heat balance on the solid phase then yields

_2T _T

--- (ig is) . s (3)K s + h a ..... + k a(p-ps)AH = PsCs_t
_x 2

The third term in this equation accounts for the heat released

to the solid when the carbon dioxide is adsorbed. It is

assumed that each solid bead at any given time and position is

at a uniform temperature throughout. IIowever, the diffusion,
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by whatever mechanism, of the carbon dioxide into the interior

of the beads is accounted for by allowing the loading of carbon

dioxide on the bead to vary as a function of radial position

inside the Lead.

A material balance on carbon dioxide insic]e the bead is

needed to define this variation: the bead is assumed to be

spherical in shape, with all beads being of the same diaJneter.

The one-dimensional equation for diffusion into the interior

of the Leads is

1 _ [r2aW] _w
D r-_ _r [ -_-£] : -f£-. (4)

This equation applies to each bead, and beads are located

throughout the length of the bed. The gas in contact wit],.

each Lead contains carbon dioxide at a partial pressure which

varies with both time and position.

Ti_is microscopic system must be tied to the macroscopic

gas system by a boundary condition at the surface of the beads.

This condition states that, at the surface where r = R,

: o (5)

An equilibrium condition relating the loading at the surface

of the bead to the eguilibrium partial pressure is also required°

This relation is a function of the solid temperature. For (5A)

sieve this condition is given (i) as



Ps = exp[ 23.823
9166.56
%_+ 460 • ]+ 1.678 im,_ (6)

Specification of the initial condition of the bed and of the

inlet conditions of the gas stream are sufficient to define

the problem.

An efficient numerical method was dr_ __velo_,ec. for this

complete model. Values of the various parameters were obtained

from the report by Airesearch (i), and a ntm:h,er of runs were

made }Jith the program. The program did not take a large

amount of computer time in the light of the com]?lexity of the

model. Ho_,'ever, with the numerical values of the physical

constants used, it was al?parent from thes -__<: runs that a number

. ±_ ,

of ot]ler simplifying assump_lons could be made.

'/'he most significant finding was that, .because of the

high value of the coefficient for diffusion _._ithin the beads,

tile loading inside the beads <..,asalmost uniform. Consecuently,

o_.....,,,_............ w_c-,_" sys'-tern could be re_?resented, by a single

equation within the macroscopic system. In effect, the micro-

scopic material balance of eguation (4) is combined with the

material balance at the surface of the bead to yield this

relation, which is

w
ka_-I (p _ Ps ) .... (7)9 _t

s

This macroscopic model is then represented by egns. (i), (2),

(3), (6), and (7). The computer program for the microscopic-



macroscopic system was simplified to describe this simpler

system, and the results differed little from those of the

complete system with significant savings in computer time.

Two further simplifying assumptions can also be justified.

First, it was found that tile longitudinal temperature variation

was small; so, v.ith the small value of K, the bed thermal

conductivity, this term can be eliminated from the equation.

Furthermore, h, the heat transfer coefficient between the gas

and the _olmQ was large enough that the temperature of the

gas and that of the solid differed little. Thus, these two

phases were assumed to be at a single temperature and eqns (2)

and (3) _ere combined to yield the relation

_T [ .........PsCs ] _T _ ka,_IIc (P-Ps)
u_-_ + 1 + fpgCg] _t fpg g

(s)

]';quations (i), (6), (7), and (8) thus constitute the simplest

model for the carAon (;._ox±(:e system

....... .L. 4 ___ J-l,An asbu:-Lz_u_un _at l.nass _ ..... fox J _ rar)id _nr_.-._q'..f_

equilibrium to exist between the partial Dressure of carbon

dioxide in the gas phase and the loading of carbon dioxide

on the solid beads is not justified. However, the same

simplified program was used for the adsorption of _.,ater vapor

by a molecular sieve. For this system the mass transfer

coefficient, k, is much larger than for carbon dioxide, and

such an assu_-:Iption is justified. Et_ps. (]) and (7) can be

combined to yield



Pps aw

fpgM at
(9)

Equations (8) and (9) together with an equilibrium relation

for the water vapor system analogous to eqn. (6) then

describe this simplest system for adsorption.

Model for Desorption Process. One proposed procedure for the

desorption of the carbon dioxide is to open the bed to the

vacuum of deep space. The gas in the voids of the bed will

quickly be exhausted, and, after this process is completed,

the total pressure of gas in the voids will equal to the partial

pressure of carbon dioxide that has desorbed from the bed.

For any pressure drop at all, the density of the gas cannot be

assumed constant, but it will be related to the temperature and

pressure by the ideal gas relationship or other appropriate

equation of state. The material balance in the gas phase then

becomes

a (Upg)Ka _+ (i0)
- -Y (P - Ps ) = _ ax

and the heat balance can be obtained as

[Ka AH

--{ (P-Ps) _g + T =Pg aT + uaT 4. fCg at (ii)

Equation (7) still applies to this system, and the equilibrium

relation of eqn. (6) also applies. However, a relation between

the velocity and the pressure gradient is required. The report
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by Airesearch (_) gives an empirical relation of the form

] _p
u = F _x (12)

where the coefficient F is given as a function of p. These

relations are sufficient to define the problem. A numerical

method for the solution of these equations was developed.

The results of this solution showed that, for the boundary

conditions developed by Airesearch (i), the desorption of the

carbon dioxide from the beads was much slower than the flow

of carbon dioxide out the bed to deep space. Consequently,

the partial pressure of carbon dioxide in the void of the bed

can be taken as zero for all positions in the bed. The

desorption from any part of the bed is then governed simply by

k_4 dw

Ps Ps = d-t (13)

and the equilibrium relationship. The solid temperature will

Q

drop, however, so a re.,.a_lonsnlp to determine it _ ..... _

This is

MCs d--t = AH + Cg d--t (14)

At some time during the desorption process heat may be applied

to the bed to increase the rate of desorption. This heating

term can be included in eqn. (14). Of course, if the desorption

rate is increased greatly, it may be necessary to use the more

complete desorption model.



Numerical Method for Solution of Complete Adsorption Model.

The complete adsorption model consists of equations (i), (2),

and (3) to describe the macroscopic system, and equation (4) to

describe the microscopic system° These are related through

eqn. (5). The three dependent variables of the macroscopic

system are the partial pressure of carbon dioxide, p, and the

temperatures of the gas and of the solid, Tg and T s. The

dependent variable of the microscopic system is the loading

of carbon dioxide on the solid beads, w. The partial pressure

in equilibrium with this loading, Ps is related to w by eqn. (6).

For this system of equations and unknowns a double grid of

points at each time level is set up for the finite difference

solution. These points are arranged as shown in Figure ].

The properties of the gas, p and Tg, are determined at the

14-- ax --->1

x 0 x 0 x 0 x 0 x 0 x n+l

At +

x 0 x 0 x 0 x 0 x 0 x n

i-i i i

Figure i. Arrangement of Points

points marked x; and those of the solid, w and Ts, are

determined at the points marked 0, which are half-way between

the points for the gas properties. The finite difference



analogs are written around a point in the center of a box

formed by four points for the gas properties. One of these

points is marked T in Figure i.

The substantive derivatives of the gas properties require
_x

that A-_ = u to minimize truncation error (_).This restriction

requires the time step to be small, but it was found to be a

necessary restriction for the type of process simulated. The

finite difference analog to one of these substantive derivatives

is

+ u_x _ Pi,n+l-Pi-l,n_t _ At (15)

The time derivatives for properties of the solid are represented

simply as

8T s % (Ts) i,n+l- (Ts) i, n
(16)

8t _t

It should be noted that solid properties with the subscript i

are at a point one-half an increment from the point where

properties of the gas phase have the same subscript.

The terms representing the interphase transfer of mass

and heat must be approximated at the centered point marked by +

in Figure i. The solid properties are represented simply as

(T s) _ ½1(Ts ) + (T s)i,n+½ _ ' (17)itn i,n+



i0

The gas properties were originally represented by the average

of the values at the four surrounding points as was done by

Herron (_). It was discovered during the course of this

research that the diagonal analog of

Pi-½,n+½ _ ½ IPi,n+l + Pi-l,nl
(18)

led to much better solutions. This discovery was applied to

the countercurrent heat exchanger problem (2) and led to a

publication (_) which is also a part of Section V of this report.

The solution of this set of equations proceeds first with

the computation of the loading, w, and the partial pressure, p,

throughout the column at the new time step from eqns. (i), (4),

(5), and (6). The temperature of the gas does not appear in

these equations, and the temperature of the solid is included

only through the equilibrium relation, eqn. (6). The effect

of solid temperature on this relation is slight enough that

°the temperature ---=_ _^ 4._ _ _4_ i_i can h_ used

Several runs made with iteration showed there was no discernable

effect by improving the values for the temperature in the

equilibrium relation.

All the beads within one increment of the bed, between

two points marked by x, were assumed to have the same values of

temperature and carbon dioxide loading and to be located at the

point marked by 0 at the center of the increment. A grid of

points in the radial direction within the bead was set up so

that the gradient of w within the bead could be computed from



ii

the Crank-Nicolson finite difference equation analogous

to eqn. (4).

The solution was begun by computing the loading distri-

bution within the bead at the point nearest the bed inlet.

The analog to the boundary condition of eqn. (5) contains

the unknown value of p at the point one-half increment beyond

the solid point. However, this value can be obtained in terms

of Ps at the solid point from an analog to eqn. (i). Eqn. (6),

the equilibrium relation, then is the third equation required.

Thus, with a minimum of iteration the loading distribution

within the bead and the carbon dioxide partial pressure at the

next gas point are obtained. This program is used to compute

these values for the entire bed at the new time step.

Once the profile of p as a function of distance at the

new time level is known, the distributions of T and T with
g s

distance can be computed from the finite difference analogs

to eqns. (2) and (3). Eqn. _;'_' is _u,_ order in T , ...._,,_
.S

there is a boundary condition at each end. Consequently, the

values for both temperatures at all grid points at the new

time level must be determined simultaneously. This solution

is readily performed by the algorithm for bi-tridiagonal

equations (4).

This method of numerical solution was programmed and gives

very good results. It was discovered from the results of

studies with this program that simplifications in the model
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could be made. The first simplification entailed only the

replacement of the finite difference grid within a particle

by a single value of w at each solid point. This shortened

the running time considerably. The simultaneous solution of

the entire temperature distributions was still required.

For the simplest model in which the same temperature is

assigned to both solid and gas and conduction is neglected,

the temperature profile can be computed one point at a time.

This model is described by eqns. (!), (7), and (8) together

with the equilibrium relation. The program for this model

takes only a small amount of computer time and gives results

which compare favorably with those obtained from the most

complex model. The uncertainty in the values of the various

coefficients does not warrant use of a more complex model.

Furthermore, for the purposes of the laboratory which requested

the program, this simple program is sufficiently accurate.

It is important, however, that it _:as compared with a much

more complete model so that the additional simplifying

assumptions could be justified.

Numerical Method for Solution for Desorption Model. The

numerical solution of the desorption p_ocess was more difficult

even for the simple case with only one temperature variable

and with uniform loading within the beads. The additional

variable u, the gas velocity, was determined at the points
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marked by 0 in Figure i, so that the velocity was one-half

way between points where pressure was determined. This

arrangement was convenient for the numerical solution of

eqn. (12). The equations for desorption contain more non-

linear terms since the derivatives of gas density, pg, must

be expanded to derivatives of p and Tg through the equation

of state. Also, the boundary conditions are uncertain. An

empirical boundary condition on pressure at the outlet of

the bed is presented by Airesearch (_). This relation

accounts for pressure drop in the duct connecting the end of

the bed to deep space.

As a result of this boundary condition; an initial

pressure distribution inside the bed must be assumed to begin

the numerical solution. The only assumed distribution which

would yield reasonable results with the program was one of

zero pressure throughout the bed. Later analysis of the

relations and coefficients confirmed this value to be

reasonable. Thus, it was determined that the process of

desorption was much slower than the outflow of the gas from

the duct, at least at the temperatures of the unheated bed.

Status. The computer programs have been made available to the

laboratory which requested them. A few comparisons of other

simple models of thisprocess with the models discussed above

may be made. A most complete description of this work in the

form of a doctoral dissertation is being prepared.



Nomenclature

a - surface area of beads per unit volume of bed available
for interface transfer

c - heat capacity of gas
g

c - heat capacity of solid
s

D - coefficient of-diffusion for adsorbed species inside bead

f - void fraction in bed

h - coefficient of heat transfer between gas and solid

_H - heat of adsorption

k - coefficient of mass transfer between gas and solid

K - thermal conductivity of bed

M - molecular weight of adsorbed species

p - partial pressure of adsorbed species

Ps - saturation partial pressure of adsorbed species

P - total pressure

r - radial position inside bead

t - time

T - temperature

T - temperature of gas
g

T s - temperature of solid

u - gas velocity

w - loading of adsorbed species on solid

x - distance position in bed

pg - gas density

pp.- particle density of bead

Ps - bulk density of solid in bed
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Improved numerical sohttion of a countcrcurrent heat exchangert

(First received 13 September 1968; in rerised form 28 September 1968)

Dear Sir:

In a previous paper[l] an efficient numerical method for
the solution of pure convective transport problems with
split boundary conditions was described. The one short-
coming of this method was an oscillation in the neighborhood
of a discontinuity in one of the dependent variables as shown
in Fig. 2. Although the oscillation did not remain in the
system after the discontinuity had flowed out of the system
and later results were not distorted for some applications.
it is desirable to ,obtain a numerical solution without this

oscillation. Recently, it was discovered that the oscillation
can be eliminated by a minor modification which does not

complicate the solution nor decrease its efficiency.
The system used to describe the method is a countercurrent

heat exchanger described by

au " " " V 8u
--=#t zl_v--u)-- l_x (la)

°V=-y,(_-u)+ V
#-t =#x" (lb)

Boundary conditions for the test problem are

u(x,0) = 0 for allx

u(0, t) = I00 forallt
(Ic)

t'(x, 0) = 0 for allx

v(L, t) = 0 for all t.

Centered difference equations were used to replace Eq. (I)
for the numerical solution. Location of the center point for
the analogs is shown in Fig. I. The only .analog which was
modified from those described in the original paper is the
one for uj+_:=.n+::2used in the interphase heat transfer terms.

"In the original method, the analog used was

UJ-1-1/2._+ll2 _ _(llj+l.Jl+l-_'llj+l.ldC'Uj.ll_-| _-Uj.,). (5)

it is this analog which causes the oscillation. For the modified
method, this temperature is replaced by the average of the
two values lying along the diagonal in the direction of flow;
namely,

u_u=..+t= " ½(u_t..+, + u_..). (Sa)

I+1

• .n- | -

-I

(

, )

It" _/2

. ar : n-t-I/2

l--I _, 1+2

Fig. I. Physical representation of centered differencing.
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Fig. 2. Temperature profile of inner fluid for 100°F step
change at exchanger inlet after 8 scc. Implicit numerical

solution vs. analytic solution.

This analog preserves the second-order-correctness of the.
method in both space and time. Furthermore. the resulting
finite difference equations fit the bi-tridiagonal form and can
be solved by the algorithm available. The shifted numbering
system described in the original paper .should be retained,
and the relation between space and time increments that
minimizes truncation should also be used.

Results obtained using the analog of Eq. (Sa) show no
oscillation whatsoever. In fact, these results agree to within
0-01 per cent of the analytic solution for the case shown in
Fig. 2 at all points. This close agreement was obtained using
twenty increments for the entire exchanger length. There was
no distortion whatsoever at the discontinuity. This behavior
makes the solution of the modified system useful for represent-
ing hyperbolic systems in controller studies.

No detailed analysis of the two analogs has been made.
However, it is apparent that the four-point analog of Eq. (5)
introduces into its equation a value of the dependent variable.
uj+t.,, which is ahead of the discontinuity. Actually, the
function u is double valued at the discontinuity, and the
inclusion of the value at this point gives rise to the oscillation.
The diagonal analog of Eq. (5a) does not contain values on
both sides of the discontinuity, so no oscillation occurs.

A number of analogs for the unperturbed temperature, v,
were used in conjunction with analog of Eq. (5a) for u. The

four-point analog of Eq. (5) for v gave the best results,
although results using the diagonal analog Eq. (5a) were
satisfactory. As a general rule. the four-point analog can
always be used if there is no discontinuity in the dependent
variable, but the diagonal analog should be used when a dis-
continuity is introduced into a variable.

Tulane University D.U. VON ROSENBERG
New Orleans, Louisiantr. U.S.A. D.E. MOUNT
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